Structures of the ZrZn22 family: suprapolyhedral nanoclusters, methods of self-assembly and superstructural ordering

2009 ◽  
Vol 65 (3) ◽  
pp. 300-307 ◽  
Author(s):  
G. D. Ilyushin ◽  
V. A. Blatov

A combinatorial topological analysis is carried out by means of the program package TOPOS4.0 [Blatov (2006), IUCr Comput. Commun. Newsl. 7, 4–38] and the matrix self-assembly is modeled for crystal structures of the ZrZn22 family (space group Fd\bar 3m, Pearson code cF184), including the compounds with superstructural ordering. A number of strict rules are proposed to model the crystal structures of intermetallics as a network of cluster precursors. According to these rules the self-assembly of the ZrZn22-like structures was considered within the hierarchical scheme: primary polyhedral cluster → zero-dimensional nanocluster precursor → one-dimensional primary chain → two-dimensional microlayer → three-dimensional microframework (three-dimensional supraprecursor). The suprapolyhedral cluster precursor AB 2 X 37 of diameter ∼ 12 Å and volume ∼ 350 Å3 consists of three polyhedra (one AX 16 of the \bar 43m point symmetry and two regular icosahedra BX 12 of the \bar 3m point symmetry); the packing of the clusters determines the translations in the resulting crystal structure. A novel topological type of the two-dimensional crystal-forming 4,4-coordinated binodal net AB 2, with the Schläfli symbols 3636 and 3366 for nodes A and B, is discovered. It is shown that the ZrZn22 superstructures are formed by substituting some atoms in the cluster precursors. Computer analysis of the CRYSTMET and ICSD databases shows that the cluster AB 2 X 37 occurs in 111 intermetallics belonging to 28 structure types.

Procedures are outlined for generation of crystal structures of primary amide molecules by constructing the possible ways in which the molecules may pack. For each given one- or two-dimensional hydrogen-bonded array, ensembles of three-dimensional crystal structures are generated by considering the possible ways in which the arrays may be juxtaposed. Observed and generated hypothetical molecular arrangements are analysed to highlight both favourable and unfavourable features, par­ticularly in terms of close packing principles, the size and shape of the molecule, van der Waals and Coulomb interactions and N-H ∙ ∙ ∙ O bonding geometry.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shota Ono

AbstractSome of the three-dimensional (3D) crystal structures are constructed by stacking two-dimensional (2D) layers. To study whether this geometric concept, i.e., using 2D layers as building blocks for 3D structures, can be applied to computational materials design, we theoretically investigate the dynamical stability of copper-based compounds CuX (a metallic element X) in the B$$_h$$ h and L1$$_1$$ 1 structures constructed from the buckled honeycomb (BHC) structure and in the B2 and L1$$_0$$ 0 structures constructed from the buckled square (BSQ) structure. We demonstrate that (i) if CuX in the BHC structure is dynamically stable, those in the B$$_h$$ h and L1$$_1$$ 1 structures are also stable. Using molecular dynamics simulations, we particularly show that CuAu in the B$$_h$$ h and L1$$_1$$ 1 structures withstand temperatures as high as 1000 K. Although the interrelationship of the metastability between the BSQ and the 3D structures (B2 and L1$$_0$$ 0 ) is not clear, we find that (ii) if CuX in the B2 (L1$$_0$$ 0 ) structure is dynamically stable, that in the L1$$_0$$ 0 (B2) is unstable. This is rationalized by the tetragonal Bain path calculations.


2021 ◽  
pp. 113336
Author(s):  
Tatiana Latychevskaia ◽  
Recep Zan ◽  
Sergey Morozov ◽  
Kostya S. Novoselov

1982 ◽  
Vol 92 (3) ◽  
pp. 747-752 ◽  
Author(s):  
WS Haston ◽  
JM Shields ◽  
PC Wilkinson

The adhesion and locomotion of mouse peripheral lymph node lymphocytes on 2-D protein- coated substrata and in 3-D matrices were compared. Lymphocytes did not adhere to, or migrate on, 2-D substrata suck as serum- or fibronectin-coated glass. They did attach to and migrate in hydrated 3-D collagen lattices. When the collagen was dehydrated to form a 2-D surface, lymphocyte attachment to it was reduced. We propose that lymphocytes, which are poorly adhesive, are able to attach to and migrate in 3-D matrices by a nonadhesive mechanism such as the extension and expansion of pseudopodia through gaps in the matrix, which could provide purchase for movement in the absence of discrete intermolecular adhesions. This was supported by studies using serum-coated micropore filters, since lymphocytes attached to and migrated into filters with pore sizes large enough (3 or 8 mum) to allow pseudopod penetration but did not attach to filters made of an identical material (cellulose esters) but of narrow pore size (0.22 or 0.45 mum). Cinematographic studies of lymphocyte locomotion in collagen gels were also consistent with the above hypothesis, since lymphocytes showed a more variable morphology than is typically seen on plane surfaces, with formation of many small pseudopodia expanded to give a marked constriction between the cell and the pseudopod. These extensions often remained fixed with respect to the environment as the lymphocyte moved away from or past them. This suggests that the pseudopodia were inserted into gaps in the gel matrix and acted as anchorage points for locomotion.


2018 ◽  
Vol 25 (9) ◽  
pp. 3386-3405 ◽  
Author(s):  
Maryam Hassani ◽  
Arash Shahin ◽  
Manouchehr Kheradmandnia

Purpose The purpose of this paper is to examine the application of C-shaped QFD 3D Matrix in comparing process characteristics (PC), performance aspects (PA) and customer requirements, simultaneously and to prioritize the first two sets, respectively. Design/methodology/approach A three dimensional matrix has been developed with three sets of PC, PA and customers’ requirements and C-shaped matrix has been applied for simultaneous comparison of the dimensions and prioritization of the subsets of PC and PA. The proposed approach has been examined in a post bank. Findings Findings confirm the possibility of simultaneous comparison and prioritization of the three sets of dimensions of this study in post bank services. In addition, “growth and learning” and “bilateral relationship with suppliers” had the first priorities among PA and PC, respectively. Research limitations/implications While the proposed approach has many advantages, filling the matrixes is time-consuming. Since illustrating the 3D matrix was not possible, the matrix was separated into five two-dimensional matrixes. Originality/value Compared to the studied literature, the proposed approach is practically new in the post bank services.


2009 ◽  
Vol 65 (3) ◽  
pp. m139-m142 ◽  
Author(s):  
Rajesh Koner ◽  
Israel Goldberg

The title compound, (5,10,15,20-tetra-4-pyridylporphyrinato)zinc(II) 1,2-dichlorobenzene disolvate, [Zn(C40H24N8)]·2C6H4Cl2, contains a clathrate-type structure. It is composed of two-dimensional square-grid coordination networks of the self-assembled porphyrin moiety, which are stacked one on top of the other in a parallel manner. The interporphyrin cavities of the overlapping networks combine into channel voids accommodated by the dichlorobenzene solvent. Molecules of the porphyrin complex are located on crystallographic inversion centres. The observed two-dimensional assembly mode of the porphyrin units represents a supramolecular isomer of the unique three-dimensional coordination frameworks of the same porphyrin building block observed earlier. The significance of this study lies in the discovery of an additional supramolecular isomer of the rarely observed structures of metalloporphyrins self-assembled directly into extended coordination polymers without the use of external ligand or metal ion auxiliaries.


Nano Letters ◽  
2011 ◽  
Vol 11 (6) ◽  
pp. 2533-2537 ◽  
Author(s):  
C.-H. Chang ◽  
L. Tian ◽  
W. R. Hesse ◽  
H. Gao ◽  
H. J. Choi ◽  
...  

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 1819 ◽  
Author(s):  
Francois Bordeleau ◽  
Cynthia A. Reinhart-King

There has been immense progress in our understanding of the factors driving cell migration in both two-dimensional and three-dimensional microenvironments over the years. However, it is becoming increasingly evident that even though most cells share many of the same signaling molecules, they rarely respond in the same way to migration cues. To add to the complexity, cells are generally exposed to multiple cues simultaneously, in the form of growth factors and/or physical cues from the matrix. Understanding the mechanisms that modulate the intracellular signals triggered by multiple cues remains a challenge. Here, we will focus on the molecular mechanism involved in modulating cell migration, with a specific focus on how cell contractility can mediate the crosstalk between signaling initiated at cell-matrix adhesions and growth factor receptors.


Sign in / Sign up

Export Citation Format

Share Document