SEDEM, a Software Package for EXAFS Data Extraction and Modelling

1998 ◽  
Vol 5 (5) ◽  
pp. 1287-1297 ◽  
Author(s):  
Daniel Aberdam

A software package for extended X-ray absorption fine structure (EXAFS) data extraction and modelling, running on DOS- or Windows-operated PCs, is described. This package is written with the aim of giving the user a tool to undertake all steps of data processing and modelling, rather than making use of the most recent programming facilities. However, it remains easy to use, and self-explanatory to those who have already worked with EXAFS. It is divided into two main executable pieces of software. The first one is used to extract the EXAFS k n χ(k) function from the data and isolate the shell contributions by Fourier filtering. A tool to sum the spectra before EXAFS extraction is provided. The second one is designed to model the EXAFS spectra or the shell contributions, using amplitude and phase data either from McKale's tables, computed from the FEFF program or extracted from experimental reference spectra. This modelling program allows either an optimization of the simulation by a least-mean-square gradient algorithm, with a statistical evaluation of the result of optimization, or, in the case of a single shell, a direct determination of the four main parameters (neighbour distance and number, energy shift and Debye–Waller factor) by decorrelation of the phase and amplitude. In the presence of anharmonicity, the cumulant expansion of the radial distribution of distances is obtained from the phase and amplitude decorrelation. This package is in use at the Collaborative Research Group on Interfaces (CRG-IF) bending-magnet #32 X-ray line (BM-32) at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

Author(s):  
G.F. Bastin ◽  
H.J.M. Heijligers ◽  
J.M. Dijkstra

For the calculation of X-ray intensities emitted by elements present in multi-layer systems it is vital to have an accurate knowledge of the x-ray ionization vs. mass-depth (ϕ(ρz)) curves as a function of accelerating voltage and atomic number of films and substrate. Once this knowledge is available the way is open to the analysis of thin films in which both the thicknesses as well as the compositions can usually be determined simultaneously.Our bulk matrix correction “PROZA” with its proven excellent performance for a wide variety of applications (e.g., ultra-light element analysis, extremes in accelerating voltage) has been used as the basis for the development of the software package discussed here. The PROZA program is based on our own modifications of the surface-centred Gaussian ϕ(ρz) model, originally introduced by Packwood and Brown. For its extension towards thin film applications it is required to know how the 4 Gaussian parameters α, β, γ and ϕ(o) for each element in each of the films are affected by the film thickness and the presence of other layers and the substrate.


2011 ◽  
Vol 18 (4) ◽  
pp. 679-680 ◽  
Author(s):  
Scott Medling ◽  
Frank Bridges

When conducting EXAFS at the CuK-edge for ZnS:Cu with very low Cu concentration (<0.04% Cu), a large background was present that increased with energy. This background arises from a Zn X-ray Raman peak, which moves through the Cu fluorescence window, plus the tail of the Zn fluorescence peak. This large background distorts the EXAFS and must be removed separately before reducing the data. A simple means to remove this background is described.


2008 ◽  
Vol 77 (1) ◽  
Author(s):  
Hidekazu Mimura ◽  
Hirokatsu Yumoto ◽  
Satoshi Matsuyama ◽  
Soichiro Handa ◽  
Takashi Kimura ◽  
...  

1987 ◽  
Vol 26 (Part 1, No. 1) ◽  
pp. 157-161 ◽  
Author(s):  
Osamu Nittono ◽  
Yoshihiro Sadamoto ◽  
Sheng Kai Gong

IUCrJ ◽  
2016 ◽  
Vol 3 (4) ◽  
pp. 247-258 ◽  
Author(s):  
Tsunetomo Yamada ◽  
Hiroyuki Takakura ◽  
Holger Euchner ◽  
Cesar Pay Gómez ◽  
Alexei Bosak ◽  
...  

The detailed atomic structure of the binary icosahedral (i) ScZn7.33quasicrystal has been investigated by means of high-resolution synchrotron single-crystal X-ray diffraction and absolute scale measurements of diffuse scattering. The average atomic structure has been solved using the measured Bragg intensity data based on a six-dimensional model that is isostructural to the i-YbCd5.7one. The structure is described with a quasiperiodic packing of large Tsai-type rhombic triacontahedron clusters and double Friauf polyhedra (DFP), both resulting from a close-packing of a large (Sc) and a small (Zn) atom. The difference in chemical composition between i-ScZn7.33and i-YbCd5.7was found to lie in the icosahedron shell and the DFP where in i-ScZn7.33chemical disorder occurs on the large atom sites, which induces a significant distortion to the structure units. The intensity in reciprocal space displays a substantial amount of diffuse scattering with anisotropic distribution, located around the strong Bragg peaks, that can be fully interpreted as resulting from phason fluctuations, with a ratio of the phason elastic constantsK2/K1= −0.53,i.e.close to a threefold instability limit. This induces a relatively large perpendicular (or phason) Debye–Waller factor, which explains the vanishing of `high-Qperp' reflections.


2006 ◽  
Vol 932 ◽  
Author(s):  
Neil C. Hyatt ◽  
Martin C. Stennett ◽  
Steven G. Fiddy ◽  
Jayne S. Wellings ◽  
Sian S. Dutton ◽  
...  

ABSTRACTA range of transition metal bearing hollandite phases, formulated Ba1.2B1.2Ti6.8O16 (B2+ = Mg, Co, Ni, Zn, Mn) and Ba1.2B2.4Ti5.6O16 (B3+ = Al, Cr, Fe) were prepared using an alkoxide - nitrate route. X-ray powder diffraction demonstrated the synthesis of single phase materials for all compositions except B = Mn. The processing conditions required to produce > 95 % dense ceramics were determined for all compositions, except B = Mg for which the maximum density obtained was > 93 %. Analysis of transition metal K-edge XANES data confirmed the presence of the targeted transition metal oxidation state for all compositions except B = Mn, where the overall oxidation state was found to be Mn3+. The K-edge EXAFS data of Ba1.2B1.2Ti6.8O16 (B = Ni and Co) were successfully analysed using a crystallographic model of the hollandite structure, with six oxygen atoms present in the first co-ordination shell at a distance of ca. 2.02Å. Analysis of Fe K-edge EXAFS data of Ba1.2B2.4Ti5.4O16 revealed a reduced co-ordination shell of five oxygens at ca. 1.99Å.


Sign in / Sign up

Export Citation Format

Share Document