scholarly journals Satellite tobacco mosaic virusrefined to 1.4 Å resolution

2014 ◽  
Vol 70 (9) ◽  
pp. 2316-2330 ◽  
Author(s):  
Steven B. Larson ◽  
John S. Day ◽  
Alexander McPherson

Satellite tobacco mosaic virus(STMV) is among the smallest viruses, having 60 identical subunits arranged withT= 1 icosahedral symmetry. Its crystal structure was solved at 290 K and was refined using, in part, crystals grown in microgravity. Electron-density maps revealed nearly 57% of the genomic ssRNA. Using six flash-cooled crystals, diffraction data were recorded to 1.4 Å resolution and independent refinements of the STMV model were carried outversusthe previous 1.8 Å resolution data representing merged data from 21 crystals (271 689 unique reflections), data consisting of corresponding reflections to 1.8 Å resolution from the cooled crystals and 1.4 Å resolution data from the cooled crystals comprised of 570 721 unique reflections. Models were independently refined with full NCS constraints using the programCNSand in restrained mode using the programsCNS,REFMAC5 andSHELX-97, with the latter two procedures including anisotropic temperature factors. Significant additional structural detail emerged from the analyses, including a unique cation and anion arrangement on fivefold axes and a precise assessment of icosahedral symmetry exactness in the crystal lattice. STMV represents the highest resolution native virus structure currently known by a substantial margin, and it permits the evaluation of a precise atomic model of a spherical virus at near-atomic resolution for the first time.

2016 ◽  
Vol 72 (3) ◽  
pp. 303-318 ◽  
Author(s):  
Ashley C. W. Pike ◽  
Elspeth F. Garman ◽  
Tobias Krojer ◽  
Frank von Delft ◽  
Elisabeth P. Carpenter

Heavy-atom derivatization is one of the oldest techniques for obtaining phase information for protein crystals and, although it is no longer the first choice, it remains a useful technique for obtaining phases for unknown structures and for low-resolution data sets. It is also valuable for confirming the chain trace in low-resolution electron-density maps. This overview provides a summary of the technique and is aimed at first-time users of the method. It includes guidelines on when to use it, which heavy atoms are most likely to work, how to prepare heavy-atom solutions, how to derivatize crystals and how to determine whether a crystal is in fact a derivative.


1997 ◽  
Vol 12 (2) ◽  
pp. 70-75 ◽  
Author(s):  
Alicja Ratuszna ◽  
Michel Rousseau ◽  
Philippe Daniel

Using the Rietveld profile method, the atomic coordinates and anisotropic temperature factors of KCaF3 were refined. At room temperature, KCaF3 crystallizes in monoclinic B21/m symmetry, with the lattice parameters: a=8.754(2) Å, b=8.765(4) Å, c=8.760(5) Å, β=90.48(3)°, V=672.1(3) Å3, Z=8. The refinement procedure was stopped when RB=0.05 and the Durbin–Watson statistic factor=0.85 had been reached. The structure determined is related to the tilting of CaF6 octahedra of the a−b+c− type, which are responsible for the monoclinic distortion in perovskite crystals.


2014 ◽  
Vol 10 (7) ◽  
pp. 2881-2893
Author(s):  
Khaled JAOUADI ◽  
Tahar MHIRI ◽  
Nabil ZOUARI

Solid-solution studies in the ternary Rb2O – Bi2O3 – P2O5 system, carried out in a search for inorganic materials have a considerable interest mainly for their optical properties, specifically in laser technology, yielded the new compound RbBi(PO3)4. Single-crystal X-ray measurement revealed that RbBi(PO3)4 crystallizes in space group P21/c with a structural type IV and has lattice parameters a = 10.430, b = 8.984, c = 12.967 Å,  = 126.1°, Z = 4 and V = 981.6 Å3. The all eighteen atoms were located in the asymmetric unit. Refinement using anisotropic temperature factors for all atoms yielded weighted residuals based on F and F2 values, respectively, of R1 = 0.0131 and WR2 = 0.0252 for all observed reflections. The atomic arrangement can be described as a long chain polyphosphate organization, helical ribbons (PO3)n. Two types of infinite chains, with a period of eight PO4 tetrahedra run along the longest unit-cell directions. Infrared and Raman spectra at room temperature, were investigated, show clearly some characteristics bands of infinite chains structure of PO4 tetrahedra linked by a bridge oxygen.


Author(s):  
H. M. Maurer ◽  
Alarich Weiss

AbstractThe crystal structure of diamminesilver dinitroargentate, [Ag(NHThe point positions of the silver atoms were obtained by the heavy-atom method whereas those of the light atoms were found by difference Fourier syntheses. Coordinates and anisotropic temperature factors were refined by block-diagonal least-squares methods with the result


Author(s):  
Brian E. Healy

A spectral fatigue analysis using both the surface extrapolation and Battelle structural stress methodologies has been performed on a side shell connection detail typical of a representative FPSO or tanker vessel. This marks the first time the Battelle method has been adapted to spectral fatigue and details of the implementation are presented for narrow banded applications. Fatigue damage at the toe along a number of weld lines is computed for a variety of surface extrapolation strategies and Battelle method options. Results are reported and compared. Recommendations regarding the application of the Battelle method to spectral fatigue are made.


1986 ◽  
Vol 82 ◽  
Author(s):  
T. S. Ananthanarayanan ◽  
R. G. Rosemeier ◽  
W. E. Mayo ◽  
J. H. Dinan

SUMMARYThere is a considerable body of work available illustrating the significance of X-ray rocking curve measurements in micro-electronic applications. For the first time a high resolution (100-150µm) 2-dimensional technique called DARC (Digital Autcmated Rocking Curve) topography has been implemented. This method is an enhancement of the conventional double crystal diffractometer using a real time 2-dimensional X-ray detector.Several materials have been successfully examined using DARC topography. Same of these include: Si, GaAs, AlGaAs, InGaAs, HgMnTe, Al, Inconel, steels, etc. By choosing the appropriate Bragg reflection multi-layered micro-electronic structures have been analyzed nondestructively. Several epitaxial films, including HgCdTe and ZnCdTe, grown by molecular beam epitaxy, have also been characterized using iARC topography. The rocking curve half width maps can be translated to dislocation density maps with relative ease. This technique also allows the deconvolution of the micro-plastic lattice strain ccaponent from the total strain tensor.


1966 ◽  
Vol 44 (8) ◽  
pp. 939-943 ◽  
Author(s):  
A. K. Das ◽  
I. D. Brown

(NH4)2TeBr6 and Cs2TeBr6 crystals have the cubic K2PtCl6 structure with space group: [Formula: see text] with a0 = 10.728 ± 0.003 Å and 10.918 ± 0.002 Å respectively. The positional coordinate of the bromine atom, and the anisotropic temperature factors of all atoms in the unit cell, have been refined for both crystals by a full matrix least-squares analysis of the three dimensional X-ray diffraction data (R = 0.08). The Te—Br distance, corrected for probable thermal motions of atoms forming the bond, is 2.70 ± 0.01 Å in both crystals.


2020 ◽  
Vol 12 (4) ◽  
pp. 789-804 ◽  
Author(s):  
John Y. N. Cho ◽  
James M. Kurdzo

AbstractAn econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic thunderstorm wind casualty rates are observed to be negatively correlated with better warning performance. In combination, these statistical relationships form the basis of a cost model that can be differenced between radar network configurations to generate geospatial benefit density maps. This model, applied to the current contiguous U.S. weather radar network, yields a benefit estimate of $207 million (M) yr−1 relative to no radar coverage at all. The remaining benefit pool with respect to enhanced radar coverage and scan update rate is about $36M yr−1. Aggregating these nontornadic thunderstorm wind results with estimates from earlier tornado and flash flood cost reduction models yields a total benefit of $1.12 billion yr−1 for the present-day radars and a remaining radar-based benefit pool of $778M yr−1.


The crystal structure of β-succinic acid has been refined by three-dimensional Fourier methods, followed by differential refinements with series-termination corrections and anisotropic temperature factors. The central C—C bond at 1·533 Å is shown not to differ significantly from the length of the single bond in diamond, but the next bond connecting the chain to the carboxyl group, C—COOH, is 1·485 ± 0·013 Å and the contraction here is highly significant. The C—O distances are 1·252 and 1·322 Å, with standard deviations of about 0·012 Å. The main feature of the thermal motion is that the movement in the direction of the hydrogen-bonded molecular columns is very much less than in any other direction in the crystal, and also much less than in pure molecular crystals like benzene or naphthalene. In other directions where van der Waals contacts only exist the movement is greater. There is a molecular angular oscillation of perhaps 9° r.m.s. amplitude about an axis close to the axis of the molecular columns. A difference synthesis in the plane of the oxygen atoms is given which shows the hydrogen atom responsible for hydrogen bonding.


Sign in / Sign up

Export Citation Format

Share Document