satellite tobacco mosaic virus
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 1)

H-INDEX

19
(FIVE YEARS 0)

Author(s):  
Alexander McPherson

The structures of new crystal forms of Satellite tobacco mosaic virus (STMV) are described. These belong to space groups I2, P21212 (a low-resolution form), R3 (H3) and P23. The R3 crystals are 50%/50% twinned, as are two instances of the P23 crystals. The I2 and P21212 crystals were grown from ammonium sulfate solutions, as was one crystal in space group P23, while the R3 and the other P23 crystals were grown from sodium chloride, sodium bromide and sodium nitrate. The monoclinic and orthorhombic crystals have half a virus particle as the asymmetric unit, while the rhombohedral and cubic crystals have one third of a virus particle. RNA segments organized about the icosahedral twofold axes were present in crystals grown from ammonium sulfate and sodium chloride, as in the canonical I222 crystals (PDB entry 4oq8), but were not observed in crystals grown from sodium bromide and sodium nitrate. Bromide and nitrate ions generally replaced the RNA phosphates present in the I222 crystals, including the phosphates seen on fivefold axes, and were also found at threefold vertices in both the rhombohedral and cubic forms. An additional anion was also found on the fivefold axis 5 Å from the first anion, and slightly outside the capsid in crystals grown from sodium chloride, sodium bromide and sodium nitrate, suggesting that the path along the symmetry axis might be an ion channel. The electron densities for RNA strands at individual icosahedral dyads, as well as at the amino-terminal peptides of protein subunits, exhibited a diversity of orientations, in particular the residues at the ends.


Author(s):  
Alexander McPherson ◽  
Steven B. Larson

It was found that the crystals of at least a dozen different proteins could be thoroughly stained to an intense color with a panel of dyes. Many, if not most, of the stained protein crystals retained the dyes almost indefinitely when placed in large volumes of dye-free mother liquor. Dialysis experiments showed that most of the dyes that were retained in crystals also bound to the protein when free in solution; less frequently, some dyes bound only in the crystal. The experiments indicated a strong association of the dyes with the proteins. Four protein crystals were investigated by X-ray diffraction to ascertain the mode of binding. These were crystals of lysozyme, thaumatin, trypsin inhibited with benzamidine and satellite tobacco mosaic virus. In 30 X-ray analyses of protein crystal–dye complexes, in only three difference Fourier maps was any difference electron density present that was consistent with the binding of dye molecules, and even in these three cases (thaumatin plus thioflavin T, xylene cyanol and m-cresol purple) the amount of dye observed was inadequate to explain the intense color of the crystals. It was concluded that the dye molecules, which are clearly inside the crystals, are disordered but are paradoxically tightly bound to the protein. It is speculated that the dyes, which exhibit large hydrophobic cores and peripheral charged groups, may interact with the crystalline proteins in the manner of conventional detergents.


2014 ◽  
Vol 70 (9) ◽  
pp. 2316-2330 ◽  
Author(s):  
Steven B. Larson ◽  
John S. Day ◽  
Alexander McPherson

Satellite tobacco mosaic virus(STMV) is among the smallest viruses, having 60 identical subunits arranged withT= 1 icosahedral symmetry. Its crystal structure was solved at 290 K and was refined using, in part, crystals grown in microgravity. Electron-density maps revealed nearly 57% of the genomic ssRNA. Using six flash-cooled crystals, diffraction data were recorded to 1.4 Å resolution and independent refinements of the STMV model were carried outversusthe previous 1.8 Å resolution data representing merged data from 21 crystals (271 689 unique reflections), data consisting of corresponding reflections to 1.8 Å resolution from the cooled crystals and 1.4 Å resolution data from the cooled crystals comprised of 570 721 unique reflections. Models were independently refined with full NCS constraints using the programCNSand in restrained mode using the programsCNS,REFMAC5 andSHELX-97, with the latter two procedures including anisotropic temperature factors. Significant additional structural detail emerged from the analyses, including a unique cation and anion arrangement on fivefold axes and a precise assessment of icosahedral symmetry exactness in the crystal lattice. STMV represents the highest resolution native virus structure currently known by a substantial margin, and it permits the evaluation of a precise atomic model of a spherical virus at near-atomic resolution for the first time.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54384 ◽  
Author(s):  
Shreyas S. Athavale ◽  
J. Jared Gossett ◽  
Jessica C. Bowman ◽  
Nicholas V. Hud ◽  
Loren Dean Williams ◽  
...  

2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S115
Author(s):  
Masato Teranishi ◽  
Micke Rusmerryani ◽  
Kazutomo Kawaguchi ◽  
Hiroaki Saito ◽  
Hidemi Nagao

2012 ◽  
Vol 180 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Yingying Zeng ◽  
Steven B. Larson ◽  
Christine E. Heitsch ◽  
Alexander McPherson ◽  
Stephen C. Harvey

2011 ◽  
Vol 101 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Susan J. Schroeder ◽  
Jonathan W. Stone ◽  
Samuel Bleckley ◽  
Theodore Gibbons ◽  
Deborah M. Mathews

Sign in / Sign up

Export Citation Format

Share Document