scholarly journals In crystallooptical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF

2015 ◽  
Vol 71 (1) ◽  
pp. 15-26 ◽  
Author(s):  
David von Stetten ◽  
Thierry Giraud ◽  
Philippe Carpentier ◽  
Franc Sever ◽  
Maxime Terrien ◽  
...  

The analysis of structural data obtained by X-ray crystallography benefits from information obtained from complementary techniques, especially as applied to the crystals themselves. As a consequence, optical spectroscopies in structural biology have become instrumental in assessing the relevance and context of many crystallographic results. Since the year 2000, it has been possible to record such data adjacent to, or directly on, the Structural Biology Group beamlines of the ESRF. A core laboratory featuring various spectrometers, named the Cryobench, is now in its third version and houses portable devices that can be directly mounted on beamlines. This paper reports the current status of the Cryobench, which is now located on the MAD beamline ID29 and is thus called the ID29S-Cryobench (where S stands for `spectroscopy'). It also reviews the diverse experiments that can be performed at the Cryobench, highlighting the various scientific questions that can be addressed.

2014 ◽  
Vol 70 (a1) ◽  
pp. C1530-C1530
Author(s):  
Antoine Royant

The analysis of structural data obtained by X-ray crystallography benefits from information obtained from complementary techniques, especially if these are applied to the crystals themselves. As a consequence, optical spectroscopies as applied in Structural Biology have become instrumental in assessing the relevance of many crystallographic results. Since the year 2000, such data can be recorded close to, or directly on, the Structural Biology Group beamlines of the ESRF. A core laboratory featuring various spectrometers, named the Cryobench, is now in its third version and houses portable devices that can be directly mounted on beamlines. This presentation will report the status of the current version of the Cryobench, now located on the MAD beamline ID29 and thus called ID29S-Cryobench, S standing for 'Spectroscopy'. In particular, the new on-line Raman data collection mode of ID29 will be described. Finally, it will review the diverse experiments that can be performed at the Cryobench, highlighting various scientific questions that can be addressed.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1053
Author(s):  
Nicholas C. Wu ◽  
Ian A. Wilson

Hemagglutinin (HA) glycoprotein is an important focus of influenza research due to its role in antigenic drift and shift, as well as its receptor binding and membrane fusion functions, which are indispensable for viral entry. Over the past four decades, X-ray crystallography has greatly facilitated our understanding of HA receptor binding, membrane fusion, and antigenicity. The recent advances in cryo-EM have further deepened our comprehension of HA biology. Since influenza HA constantly evolves in natural circulating strains, there are always new questions to be answered. The incessant accumulation of knowledge on the structural biology of HA over several decades has also facilitated the design and development of novel therapeutics and vaccines. This review describes the current status of the field of HA structural biology, how we got here, and what the next steps might be.


2002 ◽  
Vol 30 (4) ◽  
pp. 521-525 ◽  
Author(s):  
O. S. Makin ◽  
L. C. Serpell

The pathogenesis of the group of diseases known collectively as the amyloidoses is characterized by the deposition of insoluble amyloid fibrils. These are straight, unbranching structures about 70–120 å (1 å = 0.1 nm) in diameter and of indeterminate length formed by the self-assembly of a diverse group of normally soluble proteins. Knowledge of the structure of these fibrils is necessary for the understanding of their abnormal assembly and deposition, possibly leading to the rational design of therapeutic agents for their prevention or disaggregation. Structural elucidation is impeded by fibril insolubility and inability to crystallize, thus preventing the use of X-ray crystallography and solution NMR. CD, Fourier-transform infrared spectroscopy and light scattering have been used in the study of the mechanism of fibril formation. This review concentrates on the structural information about the final, mature fibril and in particular the complementary techniques of cryo-electron microscopy, solid-state NMR and X-ray fibre diffraction.


Author(s):  
Zhenlu Li ◽  
Matthias Buck

Of 20,000 or so canonical human protein sequences, as of July 2020, 6,747 proteins have had their full or partial medium to high-resolution structures determined by x-ray crystallography or other methods. Which of these proteins dominate the protein database (the PDB) and why? In this paper, we list the 272 top protein structures based on the number of their PDB depositions. This set of proteins accounts for more than 40% of all available human PDB entries and represent past trend and current status for protein science. We briefly discuss the relationship which some of the prominent protein structures have with protein biophysics research and mention their relevance to human diseases. The information may inspire researchers who are new to protein science, but it also provides a year 2020 snap-shot for the state of protein science.


Author(s):  
S.J. Opella ◽  
L.E. Chirlian

Structural biology relies on detailed descriptions of the three-dimensional structures of peptides, proteins, and other biopolymers to explain the form and function of biological systems ranging in complexity from individual molecules to entire organisms. NMR spectroscopy and X-ray crystallography, in combination with several types of calculations, provide the required structural information. In recent years, the structures of several hundred proteins have been determined by one or both of these experimental methods. However, since the protein molecules must either reorient rapidly in samples for multidimensional solution NMR spectroscopy or form high quality single crystals in samples for X-ray crystallography, nearly all of the structures determined up to now have been of the soluble, globular proteins that are found in the cytoplasm and periplasmof cells and fortuitously have these favorable properties. Since only a minority of biological properties are expressed by globular proteins, and proteins, in general, have evolved in order to express specific functions rather than act as samples for experimental studies, there are other classes of proteins whose structures are currently unknown but are of keen interest in structural biology. More than half of all proteins appear to be associated with membranes, and many cellular functions are expressed by proteins in other types of supramolecular complexes with nucleic acids, carbohydrates, or other proteins. The interest in the structures of membrane proteins, structural proteins, and proteins in complexes provides many opportunities for the further development and application of NMR spectroscopy. Our understanding of polypeptides associated with lipids in membranes, in particular, is primitive, especially compared to that for globular proteins. This is largely a consequence of the experimental difficulties encountered in their study by conventional NMR and X-ray approaches. Fortunately, the principal features of two major classes of membrane proteins have been identified from studies of several tractable examples. Bacteriorhodopsin (Henderson et al., 1990), the subunits of the photosynthetic reaction center (Deisenhofer et al., 1985), and filamentous bacteriophage coat proteins (Shon et al., 1991; McDonnell et al., 1993) have all been shown to have long transmembrane hydrophobic helices, shorter amphipathic bridging helices in the plane of the bilayers, both structured and mobile loops connecting the helices, and mobile N- and C-terminal regions.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 370 ◽  
Author(s):  
Linda Cerofolini ◽  
Marco Fragai ◽  
Enrico Ravera ◽  
Christoph A. Diebolder ◽  
Ludovic Renault ◽  
...  

With the recent technological and computational advancements, structural biology has begun to tackle more and more difficult questions, including complex biochemical pathways and transient interactions among macromolecules. This has demonstrated that, to approach the complexity of biology, one single technique is largely insufficient and unable to yield thorough answers, whereas integrated approaches have been more and more adopted with successful results. Traditional structural techniques (X-ray crystallography and Nuclear Magnetic Resonance (NMR)) and the emerging ones (cryo-electron microscopy (cryo-EM), Small Angle X-ray Scattering (SAXS)), together with molecular modeling, have pros and cons which very nicely complement one another. In this review, three examples of synergistic approaches chosen from our previous research will be revisited. The first shows how the joint use of both solution and solid-state NMR (SSNMR), X-ray crystallography, and cryo-EM is crucial to elucidate the structure of polyethylene glycol (PEG)ylated asparaginase, which would not be obtainable through any of the techniques taken alone. The second deals with the integrated use of NMR, X-ray crystallography, and SAXS in order to elucidate the catalytic mechanism of an enzyme that is based on the flexibility of the enzyme itself. The third one shows how it is possible to put together experimental data from X-ray crystallography and NMR restraints in order to refine a protein model in order to obtain a structure which simultaneously satisfies both experimental datasets and is therefore closer to the ‘real structure’.


2007 ◽  
Vol 46 (6) ◽  
pp. 2041-2056 ◽  
Author(s):  
Tatiana Kh. Shokhireva ◽  
Andrzej Weichsel ◽  
Kevin M. Smith ◽  
Robert E. Berry ◽  
Nikolai V. Shokhirev ◽  
...  

2013 ◽  
Vol 69 (11) ◽  
pp. 2257-2265 ◽  
Author(s):  
David I. Stuart ◽  
Nicola G. A. Abrescia

The study of virus structures has contributed to methodological advances in structural biology that are generally applicable (molecular replacement and noncrystallographic symmetry are just two of the best known examples). Moreover, structural virology has been instrumental in forging the more general concept of exploiting phase information derived from multiple structural techniques. This hybridization of structural methods, primarily electron microscopy (EM) and X-ray crystallography, but also small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy, is central to integrative structural biology. Here, the interplay of X-ray crystallography and EM is illustrated through the example of the structural determination of the marine lipid-containing bacteriophage PM2. Molecular replacement starting from an ∼13 Å cryo-EM reconstruction, followed by cycling density averaging, phase extension and solvent flattening, gave the X-ray structure of the intact virus at 7 Å resolution This in turn served as a bridge to phase, to 2.5 Å resolution, data from twinned crystals of the major coat protein (P2), ultimately yielding a quasi-atomic model of the particle, which provided significant insights into virus evolution and viral membrane biogenesis.


Sign in / Sign up

Export Citation Format

Share Document