scholarly journals Three-dimensional hydrogen-bonded supramolecular assembly in tetrakis(1,3,5-triaza-7-phosphaadamantane)copper(I) chloride hexahydrate

2008 ◽  
Vol 64 (5) ◽  
pp. m603-m604 ◽  
Author(s):  
Alexander M. Kirillov ◽  
Piotr Smoleński ◽  
M. Fátima C. Guedes da Silva ◽  
Maximilian N. Kopylovich ◽  
Armando J. L. Pombeiro
2004 ◽  
Vol 443-444 ◽  
pp. 333-336
Author(s):  
N. Guillou ◽  
C. Livage ◽  
W. van Beek ◽  
G. Férey

Ni7(C4H4O4)4(OH)6(H2O)3. 7H2O, a new layered nickel(II) succinate, was prepared hydrothermally (180°C, 48 h, autogenous pressure) from a 1:1.5:4.1:120 mixture of nickel (II) chloride hexahydrate, succinic acid, potassium hydroxide and water. It crystallizes in the monoclinic system (space group P21/c, Z = 4) with the following parameters a = 7.8597(1) Å, b = 18.8154(3)Å, c = 23.4377(4) Å,ϐ = 92.0288(9)°, and V = 3463.9(2) Å3. Its structure, which contains 55 non-hydrogen atoms, was solved ab initio from synchrotron powder diffraction data. It can be described from hybrid organic-inorganic layers, constructed from nickel oxide corrugated chains. These chains are built up from NiO6hexameric units connected via a seventh octahedron. Half of the succinates decorate the chains, and the others connect them to form the layers. The three dimensional arrangement is ensured by hydrogen bonds directly between two adjacent layers and via free water molecules.


2015 ◽  
Vol 71 (3) ◽  
pp. 222-228 ◽  
Author(s):  
Mohamed Abdellatif Bensegueni ◽  
Aouatef Cherouana ◽  
Slimane Dahaoui

Two alkaline earth–tetrazole compounds, namelycatena-poly[[[triaquamagnesium(II)]-μ-5,5′-(azanediyl)ditetrazolato-κ3N1,N1′:N5] hemi{bis[μ-5,5′-(azanediyl)ditetrazolato-κ3N1,N1′:N2]bis[triaquamagnesium(II)]} monohydrate], {[Mg(C2HN9)(H2O)3][Mg2(C2HN9)2(H2O)6]0.5·H2O}n, (I), and bis[5-(pyrazin-2-yl)tetrazolate] hexaaquamagnesium(II), (C5H3N6)[Mg(H2O)6], (II), have been prepared under hydrothermal conditions. Compound (I) is a mixed dimer–polymer based on magnesium ion centres and can be regarded as the first example of a magnesium–tetrazolate polymer in the crystalline form. The structure shows a complex three-dimensional hydrogen-bonded network that involves magnesium–tetrazolate dimers, solvent water molecules and one-dimensional magnesium–tetrazolate polymeric chains. The intrinsic cohesion in the polymer chains is ensured by N—H...N hydrogen bonds, which formR22(7) rings, thus reinforcing the propagation of the polymer chain along theaaxis. The crystal structure of magnesium tetrazole salt (II) reveals a mixed ribbon of hydrogen-bonded rings, of typesR22(7),R22(9) andR24(10), running along thecaxis, which are linked byR24(16) rings, generating a 4,8-cflunet.


Author(s):  
Nives Politeo ◽  
Mateja Pisačić ◽  
Marijana Đaković ◽  
Vesna Sokol ◽  
Boris-Marko Kukovec

A 6-chloronicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4′-bipyridine (4,4′-bpy), namely, catena-poly[[[tetraaquanickel(II)]-μ-4,4′-bipyridine-κ2 N:N′] bis(6-chloronicotinate) tetrahydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O} n or {[Ni(4,4′-bpy)(H2O)4](6-Clnic)2·4H2O} n , (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-chloronicotinic acid and 4,4′-bipyridine in a mixture of water and ethanol. The molecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4′-bpy)(H2O)4]2+} n cation, two 6-chloronicotinate anions and four water molecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octahedrally coordinated by four water molecule O atoms and by two 4,4′-bipyridine N atoms in the trans position. The 4,4′-bipyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4′-bpy)(H2O)4]2+} n , the 6-chloronicotinate anions and the water molecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H...O and O—H...N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetrameric R 2 4(8) and R 4 4(10) loops, a dimeric R 2 2(8) loop and a pentameric R 4 5(16) loop.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5955
Author(s):  
Qi-Ying Weng ◽  
Ya-Li Zhao ◽  
Jia-Ming Li ◽  
Miao Ouyang

A pair of cobalt(II)-based hydrogen-bonded organic frameworks (HOFs), [Co(pca)2(bmimb)]n (1) and [Co2(pca)4(bimb)2] (2), where Hpca = p-chlorobenzoic acid, bmimb = 1,3-bis((2-methylimidazol-1-yl)methyl)benzene, and bimb = 1,4-bis(imidazol-1-ylmethyl)benzene were hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 has a one-dimensional (1D) infinite chain network through the deprotonated pca− monodentate chelation and with a μ2-bmimb bridge Co(II) atom, and 2 is a binuclear Co(II) complex construction with a pair of symmetry-related pca− and bimb ligands. For both 1 and 2, each cobalt atom has four coordinated twisted tetrahedral configurations with a N2O2 donor set. Then, 1 and 2 are further extended into three-dimensional (3D) or two-dimensional (2D) hydrogen-bonded organic frameworks through C–H···Cl interactions. Topologically, HOFs 1 and 2 can be simplified as a 4-connected qtz topology with a Schläfli symbol {64·82} and a 4-connected sql topology with a Schläfli symbol {44·62}, respectively. The fluorescent sensing application of 1 was investigated; 1 exhibits high sensitivity recognition for Fe3+ (Ksv: 10970 M−1 and detection limit: 19 μM) and Cr2O72− (Ksv: 12960 M−1 and detection limit: 20 μM). This work provides a feasible detection platform of HOFs for highly sensitive discrimination of Fe3+ and Cr2O72− in aqueous media.


2016 ◽  
Vol 72 (10) ◽  
pp. 1412-1416
Author(s):  
Monserrat Alfonso ◽  
Helen Stoeckli-Evans

The title isotypic complexes, bis[μ-5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylato]-κ4N1,O2,N6:O3;κ4O3:N1,O2,N6-bis[diaquamanganese(II)] tetrahydrate, [Mn2(C16H8N4O4)2(H2O)4]·4H2O, (I), and bis[μ-5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylato]-κ4N1,O2,N6:O3;κ4O3:N1,O2,N6-bis[diaquairon(II)] tetrahydrate, [Fe2(C16H8N4O4)2(H2O)4]·4H2O, (II), are, respectively, the manganese(II) and iron(II) complexes of the ligand 5,6-bis(pyridin-2-yl)-pyrazine-2,3-dicarboxylic acid. The complete molecule of each complex is generated by inversion symmetry. Each metal ion is coordinated by a pyrazine N atom, a pyridine N atom, two carboxylate O atoms, one of which is bridging, and two water O atoms. The metal atoms haveMN2O4coordination geometries and the complexes have a cage-like structure. In the crystals of both compounds, the complexes are linked by O—H...O and O—H...N hydrogen bonds involving the coordinating water molecules, forming chains along [100]. These chains are linked by O—H...O hydrogen bonds involving the non-coordinating water molecules, forming layers parallel to (011). The layers are linked by pairs of C—H...O hydrogen bonds and offset π–π interactions, so forming a hydrogen-bonded three-dimensional framework.


2020 ◽  
Vol 124 (42) ◽  
pp. 22959-22971
Author(s):  
Ioannis Skarmoutsos ◽  
Emmanuel N. Koukaras ◽  
George E. Froudakis ◽  
Guillaume Maurin ◽  
Emmanuel Klontzas

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Julia Y. Rho ◽  
Henry Cox ◽  
Edward D. H. Mansfield ◽  
Sean H. Ellacott ◽  
Raoul Peltier ◽  
...  

Abstract Self-assembling peptides have the ability to spontaneously aggregate into large ordered structures. The reversibility of the peptide hydrogen bonded supramolecular assembly make them tunable to a host of different applications, although it leaves them highly dynamic and prone to disassembly at the low concentration needed for biological applications. Here we demonstrate that a secondary hydrophobic interaction, near the peptide core, can stabilise the highly dynamic peptide bonds, without losing the vital solubility of the systems in aqueous conditions. This hierarchical self-assembly process can be used to stabilise a range of different β-sheet hydrogen bonded architectures.


2021 ◽  
Author(s):  
Wen-Yuan Wu ◽  
Tie-Huan Tang ◽  
Yi Li ◽  
Shuang Xu

Versatile bridging oxalates build up the delicate 3D structure, leaving the cavity for a hydrogen-bonded water molecule.


Sign in / Sign up

Export Citation Format

Share Document