scholarly journals Elastic strain tensor of zirconium hydrides in Zr2.5%Nb pressure tubes by synchrotron X-ray diffraction

2019 ◽  
Vol 52 (5) ◽  
pp. 1128-1143 ◽  
Author(s):  
Miguel Angel Vicente Alvarez ◽  
Javier Santisteban ◽  
Gladys Domizzi ◽  
John Okasinski ◽  
Jonathan Almer

Zirconium alloys are used in fuel cladding and structural components of nuclear power plants. Hydrogen enters the Zr matrix during plant operation and precipitates as hydride particles that degrade the mechanical properties of the alloy, limiting service life. Knowledge of the stress state within hydride precipitates is important to understand stress-induced degradation mechanisms such as delayed hydride cracking, but no direct quantification has yet been reported in the literature. Here, measurements are reported of the average elastic strain tensor within δ zirconium hydride precipitates in Zr2.5%Nb pressure tube material from CANDU power plants. Complete intensity and strain pole figures for the hydride were obtained by synchrotron X-ray diffraction experiments on specimens with hydrogen contents ranging from ∼100 wt p.p.m. hydrogen to nearly 100% δ-hydride. Zirconium hydride precipitates by a process involving a martensitic transformation, with two hydride variants possible from a single α-Zr grain. A synthetic model of the hydride crystallographic texture allowed the interpretation of the measured strain pole figures and quantification of the elastic strain tensor for both texture components. It was found that the two variants appear in nearly equal proportion but with different stress states, differing in the sign of the shear strain components (∼±3000 µ∊). This difference is possibly associated with the shear movement of Zr atoms during the phase transformation. This suggests that hydride clusters are composed of stacks of smaller hydrides in alternating hydride variants. Stresses were estimated from a set of rather uncertain hydride elastic constants. Overall, both variants showed compressive strains along the tube axial direction (∼5000 µ∊). For low hydrogen concentrations, the hydrides' stress tensor is dominated by compressive stresses of ∼300 MPa along the axial direction, probably caused by the elongated morphology of hydride clusters along this direction, and variant-dependent shear stresses of ∼±100 MPa, probably from the shear movement of the Zr atoms involved in the phase transformation.

2011 ◽  
Vol 681 ◽  
pp. 1-6 ◽  
Author(s):  
Denis Bouscaud ◽  
Raphaël Pesci ◽  
Sophie Berveiller ◽  
Etienne Patoor

A Kossel microdiffraction experimental set up is under development inside a Scanning Electron Microscope (SEM) in order to determine the crystallographic orientation as well as the inter- and intragranular strains and stresses. An area of about one cubic micrometer can be analysed using the microscope probe, which enables to study different kinds of elements such as a grain boundary, a crack, a microelectronic component, etc. The diffraction pattern is recorded by a high resolution Charge-Coupled Device (CCD) camera. The crystallographic orientation, the lattice parameters and the elastic strain tensor of the probed area are deduced from the pattern indexation using a homemade software. The purpose of this paper is to report some results achieved up to now to estimate the reliability of the Kossel microdiffraction technique.


2012 ◽  
Vol 46 (1) ◽  
pp. 153-164 ◽  
Author(s):  
B. C. Larson ◽  
L. E. Levine

The ability to study the structure, microstructure and evolution of materials with increasing spatial resolution is fundamental to achieving a full understanding of the underlying science of materials. Polychromatic three-dimensional X-ray microscopy (3DXM) is a recently developed nondestructive diffraction technique that enables crystallographic phase identification, determination of local crystal orientations, grain morphologies, grain interface types and orientations, and in favorable cases direct determination of the deviatoric elastic strain tensor with submicrometre spatial resolution in all three dimensions. With the added capability of an energy-scanning incident beam monochromator, the determination of absolute lattice parameters is enabled, allowing specification of the complete elastic strain tensor with three-dimensional spatial resolution. The methods associated with 3DXM are described and key applications of 3DXM are discussed, including studies of deformation in single-crystal and polycrystalline metals and semiconductors, indentation deformation, thermal grain growth in polycrystalline aluminium, the metal–insulator transition in nanoplatelet VO2, interface strengths in metal–matrix composites, high-pressure science, Sn whisker growth, and electromigration processes. Finally, the outlook for future developments associated with this technique is described.


2017 ◽  
Vol 50 (3) ◽  
pp. 901-908 ◽  
Author(s):  
A. Abboud ◽  
C. Kirchlechner ◽  
J. Keckes ◽  
T. Conka Nurdan ◽  
S. Send ◽  
...  

The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.


2017 ◽  
Vol 140 ◽  
pp. 168-175 ◽  
Author(s):  
Shilei Li ◽  
Youkang Wang ◽  
Zifan Che ◽  
Gang Liu ◽  
Yang Ren ◽  
...  

1985 ◽  
Vol 54 ◽  
Author(s):  
Jharna Chaudhuri ◽  
William E. Mayo ◽  
Sigmund Weissmann

ABSTRACTA new x-ray diffraction method is developed to determine the full elastic strain tensor and its distribution about a strain center in single crystal materials. It is based on the recently developed Computer Aided Rocking Curve Analyzer and is particularly well suited for analysis of thin film structures common to electronic materials. This technique will be described in detail, and its application in measuring the non-uniform strains in InGaAsP epitaxial film on InP substrate will be presented. Also, possibility of using this method to measure the uniformity of film thickness will be discussed.


2005 ◽  
Vol 495-497 ◽  
pp. 719-724
Author(s):  
R.E. Bolmaro ◽  
B. Molinas ◽  
E. Sentimenti ◽  
A.L. Fourty

Some ancient metallic art craft, utensils, silverware and weapons are externally undistinguishable from modern ones. Not only the general aspect and shape but also some uses have not changed through the ages. Moreover, when just some small pieces can be recovered from archaeological sites, the samples can not easily be ascribed to any known use and consequently identified. It is clear that mechanical processing has changed along history but frequently only a "microscopic" inspection can distinguish among different techniques. Some bronze samples have been collected from the Quarto d’Altino (Veneto) archaeological area in Italy (paleovenetian culture) and some model samples have been prepared by a modern artisan. The sample textures have been measured by X-ray Diffraction techniques. (111), (200) and (220) pole figures were used to calculate Orientation Distribution Functions and further recalculate pole figures and inverse pole figures. The results were compared with modern forging technology results. Textures are able to discern between hammering ancient techniques for sheet production and modern industrial rolling procedures. However, as it is demonstrated in the present work, forgery becomes difficult to detect if the goldsmith, properly warned, proceeds to erase the texture history with some hammering post-processing. The results of this contribution can offer to the archaeologists the opportunity to take into consideration the texture techniques in order to discuss the origin (culture) of the pieces and the characteristic mechanical process developed by the ancient artisan. Texture can also help the experts when discussing the originality of a certain piece keeping however in mind the cautions indicated in this publication.


Sign in / Sign up

Export Citation Format

Share Document