scholarly journals Crystal orientation and detector distance effects on resolving pseudosymmetry by electron backscatter diffraction

2021 ◽  
Vol 54 (2) ◽  
pp. 513-522
Author(s):  
Edward L. Pang ◽  
Christopher A. Schuh

Accurately indexing pseudosymmetric materials has long proven challenging for electron backscatter diffraction. The recent emergence of intensity-based indexing approaches promises an enhanced ability to resolve pseudosymmetry compared with traditional Hough-based indexing approaches. However, little work has been done to understand the effects of sample position and orientation on the ability to resolve pseudosymmetry, especially for intensity-based indexing approaches. Thus, in this work the effects of crystal orientation and detector distance in a model tetragonal ZrO2 (c/a = 1.0185) material are quantitatively investigated. The orientations that are easiest and most difficult to correctly index are identified, the effect of detector distance on indexing confidence is characterized, and these trends are analyzed on the basis of the appearance of specific zone axes in the diffraction patterns. The findings also point to the clear benefit of shorter detector distances for resolving pseudosymmetry using intensity-based indexing approaches.

2009 ◽  
Vol 24 (3) ◽  
pp. 647-651 ◽  
Author(s):  
M. Rester ◽  
C. Motz ◽  
R. Pippan

Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses of small indentations in copper single crystals exhibit only slight changes of the crystal orientation in the surroundings of the imprints. Far-reaching dislocations might be the reason for these small misorientation changes. Using EBSD and TEM technique, this work makes an attempt to visualize the far-propagating dislocations by introducing a twin boundary in the vicinity of small indentations. Because dislocations piled up at the twin boundary produce a misorientation gradient, the otherwise far-propagating dislocations can be detected.


2015 ◽  
Vol 48 (3) ◽  
pp. 797-813 ◽  
Author(s):  
Farangis Ram ◽  
Stefan Zaefferer ◽  
Tom Jäpel ◽  
Dierk Raabe

The fidelity – that is, the error, precision and accuracy – of the crystallographic orientations and disorientations obtained by the classical two-dimensional Hough-transform-based analysis of electron backscatter diffraction patterns (EBSPs) is studied. Using EBSPs simulated based on the dynamical electron diffraction theory, the fidelity analysis that has been previously performed using the patterns simulated based on the theory of kinematic electron diffraction is improved. Using the same patterns, the efficacy of a Fisher-distribution-based analytical accuracy measure for orientation and disorientation is verified.


2019 ◽  
Vol 196 ◽  
pp. 00057
Author(s):  
Evgeny Victorovich Boyko ◽  
Ilya Alexeevich Kostogrud ◽  
Dmitry Vladimirovich Smovzh ◽  
Pavel Evgenyevich Matochkin

The paper presents the technique of qualitative assessment of the strength of graphene layers adhesion to the surface of a copper substrate, where they are formed. The technique uses a complex of approved analytical methods: electron backscatter diffraction (EBSD), Raman spectroscopy and optical microscopy. The technique was tested on multilayer graphene grown on a copper grain with crystal orientation (111). The presented method can be used to assess the effectiveness of the methods of graphene transfer from grains with different crystal orientation.


2009 ◽  
Vol 42 (2) ◽  
pp. 234-241 ◽  
Author(s):  
David J. Dingley ◽  
Stuart I. Wright

Electron backscatter diffraction (EBSD) is a scanning electron microscope-based technique principally used for the determination and mapping of crystal orientation. This work describes an adaptation of the EBSD technique into a potential tool for crystal phase determination. The process can be distilled into three steps: (1) extracting a triclinic cell from a single EBSD pattern, (2) identifying the crystal symmetry from an examination of the triclinic cell, and (3) determining the lattice parameters. The triclinic cell is determined by finding the bands passing through two zone axes in the pattern including a band connecting the two. A three-dimensional triclinic unit cell is constructed based on the identified bands. The EBSD pattern is indexed in terms of the triclinic cell thus formed and the crystal orientation calculated. The pattern indexing results in independent multiple orientations due to the symmetry the crystal actually possesses. By examining the relationships between these multiple orientations, the crystal system is established. By comparing simulated Kikuchi bands with the pattern the lattice parameters can be determined. Details of the method are given for a test case of EBSD patterns obtained from the hexagonal phase of titanium.


Sign in / Sign up

Export Citation Format

Share Document