Momentum-resolved resonant inelastic X-ray scattering on a single crystal under high pressure

2013 ◽  
Vol 21 (1) ◽  
pp. 131-135 ◽  
Author(s):  
Masahiro Yoshida ◽  
Kenji Ishii ◽  
Ignace Jarrige ◽  
Tetsu Watanuki ◽  
Kazutaka Kudo ◽  
...  

A single-crystal momentum-resolved resonant inelastic X-ray scattering (RIXS) experiment under high pressure using an originally designed diamond anvil cell (DAC) is reported. The diamond-in/diamond-out geometry was adopted with both the incident and scattered beams passing through a 1 mm-thick diamond. This enabled us to cover wide momentum space keeping the scattering angle condition near 90°. Elastic and inelastic scattering from the diamond was drastically reduced using a pinhole placed after the DAC. Measurement of the momentum-resolved RIXS spectra of Sr2.5Ca11.5Cu24O41at the CuK-edge was thus successful. Though the inelastic intensity becomes weaker by two orders than the ambient pressure, RIXS spectra both at the center and the edge of the Brillouin zone were obtained at 3 GPa and low-energy electronic excitations of the cuprate were found to change with pressure.

2009 ◽  
Vol 94 (7) ◽  
pp. 074102 ◽  
Author(s):  
F. A. Gorelli ◽  
M. Santoro ◽  
T. Scopigno ◽  
M. Krisch ◽  
T. Bryk ◽  
...  

2020 ◽  
Vol 27 (2) ◽  
pp. 351-359
Author(s):  
I. Povedano ◽  
A. Bombardi ◽  
D. G. Porter ◽  
M. Burt ◽  
S. Green ◽  
...  

An experimental setup to perform high-pressure resonant X-ray scattering (RXS) experiments at low temperature on I16 at Diamond Light Source is presented. The setup consists of a membrane-driven diamond anvil cell, a panoramic dome and an optical system that allows pressure to be measured in situ using the ruby fluorescence method. The membrane cell, inspired by the Merrill–Bassett design, presents an asymmetric layout in order to operate in a back-scattering geometry, with a panoramic aperture of 100° in the top and a bottom half dedicated to the regulation and measurement of pressure. It is specially designed to be mounted on the cold finger of a 4 K closed-cycle cryostat and actuated at low-temperature by pumping helium into the gas membrane. The main parts of the body are machined from a CuBe alloy (BERYLCO 25) and, when assembled, it presents an approximate height of 20–21 mm and fits into a 57 mm diameter. This system allows different materials to be probed using RXS in a range of temperatures between 30 and 300 K and has been tested up to 20 GPa using anvils with a culet diameter of 500 µm under quasi-cryogenic conditions. Detailed descriptions of different parts of the setup, operation and the developed methodology are provided here, along with some preliminary experimental results.


2012 ◽  
Vol 45 (3) ◽  
pp. 453-457 ◽  
Author(s):  
Suntao Wang ◽  
Yu-fei Meng ◽  
Nozomi Ando ◽  
Mark Tate ◽  
Szczesny Krasnicki ◽  
...  

Small-angle X-ray scattering (SAXS) was performed on single-crystal chemical vapor deposition (CVD) diamonds with low nitrogen concentrations, which were fabricated by microwave plasma-assisted chemical vapor deposition at high growth rates. High optical quality undoped 500 µm-thick single-crystal CVD diamonds grown without intentional nitrogen addition proved to be excellent as windows on SAXS cells, yielding parasitic scattering no more intense than a 7.5 µm-thick Kapton film. A single-crystal CVD diamond window was successfully used in a high-pressure SAXS cell.


2008 ◽  
Vol 41 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Nozomi Ando ◽  
Pascale Chenevier ◽  
Martin Novak ◽  
Mark W. Tate ◽  
Sol M. Gruner

A high-pressure cell for synchrotron small-angle X-ray scattering (SAXS) studies of protein solutions is described. The design was optimized for use at up to 400 MPa in liquid pressure and with 8−12 keV X-rays with particular emphasis on the ease of use. The high-pressure cell was fabricated from corrosion-resistant Inconel 725 (Special Metals Corporation, Huntington, WV, USA) and featured Poulter-type windows [Poulter (1932).Phys. Rev.40, 861–871]. Flat natural diamonds, 500 µm thick, were recycled from diamond anvil cells and were shown to perform well as high-pressure SAXS windows. For a simple and effective method of sample isolation, disposable plastic sample cells with a defined path length and reproducible parasitic scattering were designed. These sample cells enable efficient use of synchrotron time. The cells facilitate rapid and easy sample changes, eliminate the need to clean the cell between sample changes, and reduce the sample volume to as low as 12 µl. The disposable cells can also be used separately from the high-pressure cell for SAXS measurements at ambient pressure and temporary storage of samples. The performance of the apparatus is demonstrated with T4 lysozyme.


IUCrJ ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Giulia Novelli ◽  
Konstantin V. Kamenev ◽  
Helen E. Maynard-Casely ◽  
Simon Parsons ◽  
Garry J. McIntyre

Single-crystal X-ray and neutron diffraction data are usually collected using separate samples. This is a disadvantage when the sample is studied at high pressure because it is very difficult to achieve exactly the same pressure in two separate experiments, especially if the neutron data are collected using Laue methods where precise absolute values of the unit-cell dimensions cannot be measured to check how close the pressures are. In this study, diffraction data have been collected under the same conditions on the same sample of copper(II) sulfate pentahydrate, using a conventional laboratory diffractometer and source for the X-ray measurements and the Koala single-crystal Laue diffractometer at the ANSTO facility for the neutron measurements. The sample, of dimensions 0.40 × 0.22 × 0.20 mm3 and held at a pressure of 0.71 GPa, was contained in a miniature Merrill–Bassett diamond-anvil cell. The highly penetrating diffracted neutron beams passing through the metal body of the miniature cell as well as through the diamonds yielded data suitable for structure refinement, and compensated for the low completeness of the X-ray measurements, which was only 24% on account of the triclinic symmetry of the sample and the shading of reciprocal space by the cell. The two data-sets were combined in a single `XN' structure refinement in which all atoms, including H atoms, were refined with anisotropic displacement parameters. The precision of the structural parameters was improved by a factor of up to 50% in the XN refinement compared with refinements using the X-ray or neutron data separately.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 976
Author(s):  
Paola Comodi ◽  
Maximiliano Fastelli ◽  
Giacomo Criniti ◽  
Konstantin Glazyrin ◽  
Azzurra Zucchini

High-pressure synchrotron X-ray diffraction was carried out on a single crystal of mascagnite, compressed in a diamond anvil cell. The sample maintained its crystal structure up to ~18 GPa. The volume–pressure data were fitted by a third-order Birch–Murnaghan equation of state (BM3-EOS) yielding K0 = 20.4(7) GPa, K’0 = 6.1(2), and V0 = 499(1) Å3, as suggested by the F-f plot. The axial compressibilities, calculated with BM3-EOS, were K0a = 35(3), K’0a = 7.7(7), K0b = 10(3), K’0b = 7(1), K0c = 25(1), and K’0c = 4.3(2) The axial moduli measured using a BM2-EOS and fixing K’0 equal to 4, were K0a = 52(2), K0b = 20 (1), and K0c = 29.6(4) GPa, and the anisotropic ratio of K0a:K0b:K0c = 1:0.4:0.5. The evolution of crystal lattice and geometrical parameters indicated no phase transition until 17.6 GPa. Sulphate polyhedra were incompressible and the density increase of 30% compared to investigated pressure should be attributed to the reduction of weaker hydrogen bonds. In contrast, some of them, directed along [100], were very short at room temperature, below 2 Å, and showed a very low compressibility. This configuration explains the anisotropic compressional behavior and the lowest compressibility of the a axis.


2020 ◽  
Vol 53 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Andrzej Grzechnik ◽  
Martin Meven ◽  
Carsten Paulmann ◽  
Karen Friese

It is shown that it is possible to perform combined X-ray and neutron single-crystal studies in the same diamond anvil cell (DAC). A modified Merrill–Bassett DAC equipped with an inflatable membrane filled with He gas has been developed. It can be used on laboratory X-ray and synchrotron diffractometers as well as on neutron instruments. The data processing procedures and a joint structural refinement of the high-pressure synchrotron and neutron single-crystal data are presented and discussed for the first time.


Sign in / Sign up

Export Citation Format

Share Document