scholarly journals Using refractive optics to broaden the focus of an X-ray mirror

2017 ◽  
Vol 24 (4) ◽  
pp. 744-749 ◽  
Author(s):  
David Laundy ◽  
Kawal Sawhney ◽  
Vishal Dhamgaye

X-ray mirrors are widely used at synchrotron radiation sources for focusing X-rays into focal spots of size less than 1 µm. The ability of the beamline optics to change the size of this spot over a range up to tens of micrometres can be an advantage for many experiments such as X-ray microprobe and X-ray diffraction from micrometre-scale crystals. It is a requirement that the beam size change should be reproducible and it is often essential that the change should be rapid, for example taking less than 1 s, in order to allow high data collection rates at modern X-ray sources. In order to provide a controlled broadening of the focused spot of an X-ray mirror, a series of refractive optical elements have been fabricated and installed immediately before the mirror. By translation, a new refractive element is moved into the X-ray beam allowing a variation in the size of the focal spot in the focusing direction. Measurements using a set of prefabricated refractive structures with a test mirror showed that the focused beam size could be varied from less than 1 µm to over 10 µm for X-rays in the energy range 10–20 keV. As the optics is in-line with the X-ray beam, there is no effect on the centroid position of the focus. Accurate positioning of the refractive optics ensures reproducibility in the focused beam profile and no additional re-alignment of the optics is required.

With the introduction of high intensity synchrotron radiation sources, X-ray diffraction has become established as a powerful probe of surface crystallography. Many surface structures have been solved with progressively larger unit meshes. More recently, the technique has been extended to provide real time monitoring of surfaces during epitaxial growth. The weak scattering of X-rays allows a simple interpretation of measured intensities through the kinematic approximation, thus giving a direct and immediate insight into the atomic geometry. The technique is not limited to the solid-vacuum interface and has potentially wide application. Thus it may be used to monitor the growth in a OMVPE reaction chamber and can probe atomic arrangements at buried interfaces such as a delta doping layer. The use of X-ray scattering for the study of epitaxial growth on semiconductor surfaces is reviewed with examples taken from recent work.


2011 ◽  
Vol 18 (4) ◽  
pp. 601-604 ◽  
Author(s):  
Tatsuhito Matsuo ◽  
Naoto Yagi

The decay time of YAG:Ce3+phosphor was studied using a CMOS camera with a frame rate of 1302000 s−1and pulsed X-rays from SPring-8. A high-resolution X-ray detector with YAG:Ce3+was used with the camera to view the focused beam from the helical undulator. Mismatch between the ring circulation time and the frame time gave rise to a periodic variation of beam intensity in successive frames. Analysis of data obtained with two bunch modes showed that the decay time of YAG:Ce3+was 60 ns. The variation of the beam positions in isolated bunches was small enough to be neglected in experiments using the focused beam. The results also show the possibility of an X-ray diffraction study at high time and space resolution.


1998 ◽  
Vol 5 (3) ◽  
pp. 902-904 ◽  
Author(s):  
Takashi Noma ◽  
Atsuo Iida

An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick–Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 × 10 µm. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.


1989 ◽  
Vol 33 ◽  
pp. 91-100 ◽  
Author(s):  
T. C. Huang

AbstractAn effective technique using grazing-incidence X-rays and asymmetric-Bragg diffraction (GIABD) for the characterization of crystalline phases on surfaces and structural depth-profiles in thin films is described. The application of the GIABD using both X-ray and synchrotron radiation sources for the analysis of an iron-oxide magnetic thin film previously reported to have an unexpected magnetically-dead layer is discussed. The X-ray diffraction analysis using the GIABD and the conventional θ-2θ scanning techniques detected an anti-ferromagnetic hexagonal α-Fe2O3 on the surface and a ferromagnetic tetragonal γ-Fe2O3 in the bulk of the film, respectively. The synchrotron diffraction analysis using incident angles below and above the critical angle of total reflection quantitatively determined the structural depth-profiles of α-Fe2O3 and γ-Fe2O3 in the film.


Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


Author(s):  
D. A. Carpenter ◽  
Ning Gao ◽  
G. J. Havrilla

A monolithic, polycapillary, x-ray optic was adapted to a laboratory-based x-ray microprobe to evaluate the potential of the optic for x-ray micro fluorescence analysis. The polycapillary was capable of collecting x-rays over a 6 degree angle from a point source and focusing them to a spot approximately 40 µm diameter. The high intensities expected from this capillary should be useful for determining and mapping minor to trace elements in materials. Fig. 1 shows a sketch of the capillary with important dimensions.The microprobe had previously been used with straight and with tapered monocapillaries. Alignment of the monocapillaries with the focal spot was accomplished by electromagnetically scanning the focal spot over the beveled anode. With the polycapillary it was also necessary to manually adjust the distance between the focal spot and the polycapillary.The focal distance and focal spot diameter of the polycapillary were determined from a series of edge scans.


1998 ◽  
Vol 5 (3) ◽  
pp. 967-968 ◽  
Author(s):  
Keiichi Hirano ◽  
Atsushi Momose

The phase shift of forward-diffracted X-rays by a perfect crystal is discussed on the basis of the dynamical theory of X-ray diffraction. By means of a triple Laue-case X-ray interferometer, the phase shift of forward-diffracted X-rays by a silicon crystal in the Bragg geometry was investigated.


Author(s):  
Matthew Wilding ◽  
Colin Scott ◽  
Thomas S. Peat ◽  
Janet Newman

The NAD-dependent malonate-semialdehyde dehydrogenase KES23460 fromPseudomonassp. strain AAC makes up half of a bicistronic operon responsible for β-alanine catabolism to produce acetyl-CoA. The KES23460 protein has been heterologously expressed, purified and used to generate crystals suitable for X-ray diffraction studies. The crystals belonged to space groupP212121and diffracted X-rays to beyond 3 Å resolution using the microfocus beamline of the Australian Synchrotron. The structure was solved using molecular replacement, with a monomer from PDB entry 4zz7 as the search model.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 273 ◽  
Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


Sign in / Sign up

Export Citation Format

Share Document