scholarly journals Characterization of a bent Laue double-crystal beam-expanding monochromator

2017 ◽  
Vol 24 (6) ◽  
pp. 1146-1151 ◽  
Author(s):  
Mercedes Martinson ◽  
Nazanin Samadi ◽  
Xianbo Shi ◽  
Zunping Liu ◽  
Lahsen Assoufid ◽  
...  

A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be most severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. This information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.

1998 ◽  
Vol 5 (4) ◽  
pp. 1215-1221 ◽  
Author(s):  
S. Bernstorff ◽  
H. Amenitsch ◽  
P. Laggner

A new high-flux wiggler beamline for fast time-resolved small-angle X-ray scattering (SAXS) based on double-focusing optics has recently commenced operation at the 2 GeV third-generation storage ring ELETTRA at Trieste, Italy. Its non-dispersive double-crystal monochromator contains three pairs of interchangeable asymmetrically cut flat Si(111)-crystal pairs, each of which is optimized for high throughput at one of the three fixed energies 5.4, 8 and 16 keV. To cope with the severe thermal power load produced by a 57-pole wiggler on the first crystal of each pair (up to 5.4 W mm−2 and 700 W under normal incidence, for 400 mA), grazing angles of 2° and optimized back-cooling have been chosen. This solution allows simultaneously a gain of 2.5–3.0 in throughput and, accordingly, in flux density. Finite-element analysis as well as commissioning tests showed that the cooling layout functions very satisfactorily, and that up to 5 × 1012 photons s−1 are available at the sample (at 8 keV and 250 mA), as predicted.


2014 ◽  
Vol 30 (S1) ◽  
pp. S41-S46 ◽  
Author(s):  
P. Mikula ◽  
M. Vrána

Properties of a special double-crystal (DC) monochromator employing bent-perfect crystals of Si in (1, −1) and (n, −m) settings are presented. The first monochromator was the bent Si(111) crystal (4 mm thickness) and the second one was in the form of a sandwich consisting of two bent Si(111) and Si(220) slabs (2 and 1.3 mm thickness, respectively). It has been found that by a simple exchange of diffraction conditions on the second monochromator one can use either Si(111) + Si(111) bent crystals in (1, −1) setting providing good luminosity and worse diffractometer resolution or Si(111) + Si(220) bent crystals in quasi-dispersive (n, −m) setting providing very good diffractometer resolution and correspondingly weaker luminosity. It has been found that besides an excellent focusing and reflectivity properties of the dispersive double-bent-crystal setting the obtained monochromatic neutron current is sufficiently high for diffraction experiments even at the medium-power research reactor.


2015 ◽  
Vol 22 (3) ◽  
pp. 801-806 ◽  
Author(s):  
Mercedes Martinson ◽  
Nazanin Samadi ◽  
Bassey Bassey ◽  
Ariel Gomez ◽  
Dean Chapman

The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called `magic condition' that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used.


1998 ◽  
Vol 5 (3) ◽  
pp. 1064-1066 ◽  
Author(s):  
Luc Ortega ◽  
Fabio Comin ◽  
Vincenzo Formoso ◽  
Andreas Stierle

Synchrotron radiation total-reflection X-ray fluorescence (SR-TXRF) has been applied to the impurity analysis of Si wafers using a third-generation synchrotron radiation undulator source. A lower limit of detectability (LLD) for Ni atoms of 17 fg (1.7 × 108 atoms cm−2) has been achieved with an optical set-up based on an Si(111) double-crystal monochromator and a horizontal sample geometry. These first results are very promising for synchrotron radiation trace element analysis since we estimate that it is possible to lower the LLD by a factor of about 25 by employing appropriate optics and detectors. The use of a crystal monochromator opens new possibilities to perform absorption and scattering experiments (NEXAFS and X-ray standing-wave methods) for chemical and structural analysis of ultratrace elements.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-135-C8-137
Author(s):  
T. MURATA ◽  
T. MATSUKAWA ◽  
M. MORI ◽  
M. OBASHI ◽  
S.-I. NAO-E ◽  
...  

2012 ◽  
Vol 460 ◽  
pp. 230-235
Author(s):  
Pei Zhen Huang ◽  
Zhou Zhou Zhang ◽  
Jian Wei Guo ◽  
Jun Sun

An axisymmetric finite-element method is developed to predict the evolution behavior of microstructures by interface migration. The formulation of the method is conducted on the basis of the energy principle during the interface motion. The computations extend earlier models by accounting in detail for the effects of grain-boundary energy, surface energy and chemical potential difference. The eventual shape of the plate-like double-crystal grain depends on both the initial β and the thermal grooving angle Ψ. For a given β, a critical Ψcexists. When Ψ>Ψc, the eventual shape is one made of two sphere segments with a thermal groove. When Ψ≤Ψc, grain splitting along the grain boundary occurs, and the splitting segments evolve into two spheres, respectively. Both the spheroidization time and the splitting time increase with Ψ and β increasing. The volume shrinkage rate decreases with increasing Ψ.


1996 ◽  
Vol 67 (9) ◽  
pp. 3348-3348
Author(s):  
D.M. Mills ◽  
W.K. Lee ◽  
M. Keeffe ◽  
D.R. Haeffner ◽  
P. Fernandez

Author(s):  
Zheng Jiang ◽  
Eryan Wang ◽  
Ruiqiang Song ◽  
Siming Guo ◽  
Jinjie Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document