scholarly journals A phase-retrieval toolbox for X-ray holography and tomography

2020 ◽  
Vol 27 (3) ◽  
pp. 852-859 ◽  
Author(s):  
Leon M. Lohse ◽  
Anna-Lena Robisch ◽  
Mareike Töpperwien ◽  
Simon Maretzke ◽  
Martin Krenkel ◽  
...  

Propagation-based phase-contrast X-ray imaging is by now a well established imaging technique, which – as a full-field technique – is particularly useful for tomography applications. Since it can be implemented with synchrotron radiation and at laboratory micro-focus sources, it covers a wide range of applications. A limiting factor in its development has been the phase-retrieval step, which was often performed using methods with a limited regime of applicability, typically based on linearization. In this work, a much larger set of algorithms, which covers a wide range of cases (experimental parameters, objects and constraints), is compiled into a single toolbox – the HoloTomoToolbox – which is made publicly available. Importantly, the unified structure of the implemented phase-retrieval functions facilitates their use and performance test on different experimental data.

2017 ◽  
Author(s):  
Baikuan Guo ◽  
Feng Gao ◽  
Huijuan Zhao ◽  
Limin Zhang ◽  
Jiao Li ◽  
...  

2015 ◽  
Vol 22 (6) ◽  
pp. 1531-1539 ◽  
Author(s):  
A. K. Agrawal ◽  
B. Singh ◽  
Y. S. Kashyap ◽  
M. Shukla ◽  
P. S. Sarkar ◽  
...  

A full-field hard X-ray imaging beamline (BL-4) was designed, developed, installed and commissioned recently at the Indus-2 synchrotron radiation source at RRCAT, Indore, India. The bending-magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high-resolution radiography, propagation- and analyzer-based phase contrast imaging, real-time imaging, absorption and phase contrast tomographyetc. First experiments on propagation-based phase contrast imaging and micro-tomography are reported.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Ming Jiang ◽  
Christopher Lee Wyatt ◽  
Ge Wang

X-ray imaging is of paramount importance for clinical and preclinical imaging but it is fundamentally restricted by the attenuation-based contrast mechanism, which has remained essentially the same since Roentgen's discovery a century ago. Recently, based on the Talbot effect, groundbreaking work was reported using 1D gratings for X-ray phase-contrast imaging with a hospital-grade X-ray tube instead of a synchrotron or microfocused source. In this paper, we report an extension using 2D gratings that reduces the imaging time and increases the accuracy and robustness of phase retrieval compared to current grating-based phase-contrast techniques. Feasibility is demonstrated via numerical simulation.


2021 ◽  
Author(s):  
Yue Wu ◽  
Lin Zhang ◽  
Siqi Guo ◽  
Feng Gao ◽  
Limin Zhang ◽  
...  

Author(s):  
S. W. Wilkins ◽  
Ya. I. Nesterets ◽  
T. E. Gureyev ◽  
S. C. Mayo ◽  
A. Pogany ◽  
...  

This review provides a brief overview, albeit from a somewhat personal perspective, of the evolution and key features of various hard X-ray phase-contrast imaging (PCI) methods of current interest in connection with translation to a wide range of imaging applications. Although such methods have already found wide-ranging applications using synchrotron sources, application to dynamic studies in a laboratory/clinical context, for example for in vivo imaging, has been slow due to the current limitations in the brilliance of compact laboratory sources and the availability of suitable high-performance X-ray detectors. On the theoretical side, promising new PCI methods are evolving which can record both components of the phase gradient in a single exposure and which can accept a relatively large spectral bandpass. In order to help to identify the most promising paths forward, we make some suggestions as to how the various PCI methods might be compared for performance with a particular view to identifying those which are the most efficient, given the fact that source performance is currently a key limiting factor on the improved performance and applicability of PCI systems, especially in the context of dynamic sample studies. The rapid ongoing development of both suitable improved sources and detectors gives strong encouragement to the view that hard X-ray PCI methods are poised for improved performance and an even wider range of applications in the near future.


2017 ◽  
Vol 73 (4) ◽  
pp. 282-292 ◽  
Author(s):  
Martin Krenkel ◽  
Mareike Toepperwien ◽  
Frauke Alves ◽  
Tim Salditt

X-ray tomography at the level of single biological cells is possible in a low-dose regime, based on full-field holographic recordings, with phase contrast originating from free-space wave propagation. Building upon recent progress in cellular imaging based on the illumination by quasi-point sources provided by X-ray waveguides, here this approach is extended in several ways. First, the phase-retrieval algorithms are extended by an optimized deterministic inversion, based on a multi-distance recording. Second, different advanced forms of iterative phase retrieval are used, operational for single-distance and multi-distance recordings. Results are compared for several different preparations of macrophage cells, for different staining and labelling. As a result, it is shown that phase retrieval is no longer a bottleneck for holographic imaging of cells, and how advanced schemes can be implemented to cope also with high noise and inconsistencies in the data.


Sign in / Sign up

Export Citation Format

Share Document