Unusual crystal structure ofN-substituted maleamic acid – very strong effect of intramolecular hydrogen bonds

Author(s):  
Raju Francis ◽  
Pallepogu Raghavaiah ◽  
Kuruvilla Pius

N-Carbamylmaleamic acid (malur) undergoes cyclodehydration under favourable conditions, as expected, to giveN-carbamyl maleimide.N-(Carboxymethyl) maleamic acid (malgly), however, does not undergo a similar cyclization reaction. Strong π bonding between the C and N of the amide group as well as two intramolecular hydrogen bonds makesmalglya planar molecule, as revealed by single-crystal X-ray studies.

2011 ◽  
Vol 89 (8) ◽  
pp. 971-977
Author(s):  
Danielle M. Chisholm ◽  
Robert McDonald ◽  
J. Scott McIndoe

Methylation of aromatic amino groups is usually straightforward, but the formation of two intramolecular hydrogen bonds in 3,3′-N,N′-bis(amino)-2,2′-bipyridine and (or) the potential for ring methylation prevents the clean tetramethylation of this molecule. Numerous attempts to make 3,3′-N,N′-bis(dimethylamino)-2,2′-bipyridine produced only complex mixtures of variously methylated products, and the only isolated molecule was 3,3′-N,N′-bis(methylamino)-2,2′-bipyridine, for which an X-ray crystal structure was obtained.


1974 ◽  
Vol 139 (3) ◽  
pp. 791-792 ◽  
Author(s):  
Patrice de Meester ◽  
David M. L. Goodgame ◽  
T. Jeffrey Jones ◽  
Andrzej C. Skapski

Single-crystal X-ray studies of a manganese(II) derivative of guanosine 5′-monophosphate, [Mn(5′-GMP)(H2O)5],3H2O, have shown that it is isostructural with its nickel analogue. The manganese atom therefore is bonded to five water molecules with the remaining octahedral co-ordination site being occupied by N-7 of the nucleotide base. No direct metal–phosphate bonding is involved, but there are structure-stabilizing intramolecular hydrogen bonds between two phosphate oxygen atoms and co-ordinated water molecules.


2018 ◽  
Vol 74 (10) ◽  
pp. 1424-1426 ◽  
Author(s):  
Shu Yamazaki ◽  
Kazuki Nishiyama ◽  
Shiomi Yagi ◽  
Tomoyuki Haraguchi ◽  
Takashiro Akitsu

The title compound, C10H10O4, was synthesized from tetramethyl-1,4-benzoquinone. In the crystal, the almost planar molecule (r.m.s. deviation = 0.024 Å) forms intramolecular hydrogen bonds between the aldehyde and hydroxy groups and exhibits C 2v symmetry. This achiral molecule crystallizes in the chiral space group P21 with intermolecular O—H...O and C—H...O hydrogen bonding and C—H...π and C=O...π interactions stabilizing the crystal packing.


2012 ◽  
Vol 42 (10) ◽  
pp. 1046-1051 ◽  
Author(s):  
A. S. Dayananda ◽  
Grzegorz Dutkiewicz ◽  
H. S. Yathirajan ◽  
B. Narayana ◽  
Maciej Kubicki

2007 ◽  
Vol 72 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Goran Bogdanovic ◽  
Vukadin Leovac ◽  
Ljiljana Vojinovic-Jesic ◽  
Biré-Spasojevic De

The crystal structure of [CoIII(L)(py)3][CoIICl3(py)] (H2L=salicylaldehyde semicarbazone)was determined by X-ray analysis based on two single crystal X-ray experiments performed at 120 K and 293 K, respectively. It was found that the pyridine ligand of the complex anion is disordered over two positions. The preferential position of this pyridine found at120Kwas explained in terms of the C-H...Cl intermolecular interaction between the tetrahedral [CoII(py)Cl3]- anions. The mer-octahedral geometry of the cation in the presented crystal structure was compared with previously published structures of similar composition, [CoIII(L1)(py)3]+[CoIICl3(py)]-?EtOH and [CoIII(LI)(py)3]+I3-(H2LI = salicylaldehyde S-methylisothiosemicarbazone). Although the tetrahedral [CoIICl3(py)]- anions possess the same charge, they mutually form different intermolecular interactions which can be realized either by C-H...Cl hydrogen bonds or by ?-? interactions between the pyridine rings.


1989 ◽  
Vol 44 (11) ◽  
pp. 1359-1364 ◽  
Author(s):  
Wolfgang Poll ◽  
Michaela Lohmeyer ◽  
Dietrich Mootz

The melting diagram of the quasibinary system D2O— DF was determined by low-temperature DTA and X-ray powder diffraction. It was found to be largely similar to that of the corresponding non-deuterated system H2O—HF with the striking exception of an additional phase with a composition of its own, 2D2O· 3 DF, and stable between ca. —78 and —71°C. Its structure, determined from single-crystal MoKā diffractometer data at —150°C, is rhombohedral (space group R3c, Z = 6, a = 769.9, c = 1242.1 pm) and strongly related to that of NH, · 4 HF or NH4[F(HF)3] with also seven H (as to be compared to D) and five non-H (non-D) atoms per formula unit. But with the O atom involved in four hydrogen bonds, one O · · · O and three O · · · F. at distances of 273.9 and 259.5 pm, respectively, the compound appears to be a molecular adduct rather than an oxonium salt. The D atoms in the hydrogen bonds are distributed over two positions each. — The remaining intermediary phases of the deuterated system, i. e. D2O · DF, D2O· 2 DF and D2O · 4 DF, are isotypic to their protonated counterparts of known crystal structure. For D2O · DF and D2O-2 DF these results from powder patterns were confirmed by two more single-crystal studies. The ionic structures — D3OF and D3O[F(DF)], respectively — show no distinctive effect of the H/D substitution even on details of the interatomic geometries.


2019 ◽  
Vol 31 (8) ◽  
pp. 1755-1761
Author(s):  
K. Naresh ◽  
B.N. Sivasankar

A new copper complex of pyridine-2,6-dicarboxylate containing hydrazinium cation, formulated as (N2H5)2[Cu(PDC)2]·4H2O (PDC = pyridine-2,6-dicarboxylate) has been synthesized from copper(II) nitrate, hydrazine hydrate and pyridine-2,6-dicarboxylic acid as a single crystal and characterized by elemental analysis and spectroscopic (IR and UV-visible), thermal (TG/DTG), single crystal X-ray diffraction and biological studies. A six-coordinate complex with a distorted octahedral geometry around Cu(II) ion is proposed and confirmed by X-ray single crystal method. The structure reveals that two pyridine-2,6-dicarboxylate species acting as tridentate ligands and hydrazinium cation present as a counter ion along with non-coordinated four water molecules. The structural units of copper(II) is mutually held by the hydrogen bonds and π···π and C–O···π interactions. The copper(II) complex is connected to one another via O–H···O hydrogen bonds, forming water clusters, which plays an important role in the stabilization of the crystal structure. In the water clusters, the water molecules are trapped by the cooperative association of coordination interactions as well as hydrogen bonds. Both cation and anion interactions and crystal from various types of intermolecular contacts and their importance were explored using Hirshfeld surface analysis. This indicates that O···H/H···O interactions are the superior interactions conforming excessive H-bond in the molecular structure. The interaction of copper(II) complex with calf thymus DNA (CT-DNA) was investigated by electronic absorption spectroscopic technique. The electronic evidence strongly shows that the compound interacts with calf thymus through intercalation with a binding constant of Kb = 5.7 × 104 M–1.


1987 ◽  
Vol 40 (3) ◽  
pp. 625 ◽  
Author(s):  
HD Becker ◽  
BW Skelton ◽  
AH White

Hydrolysis of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone in aqueous ethanol gives the deep-red coloured ammonium salt of a monocyano-dichloro-monohydroxy-benzoquinone which crystallizes in the tetragonal space group I41 /a, a 20.832(5), c 8.618(2) �, Z 16. Single-crystal X-ray structure determination (R 0.036 for 1185 'observed' reflections) show the presence of ammonium cations forming hydrogen bonds in the lattice alternatingly with the tautomeric anion of 2-cyano-5,6-dichloro-3-hydroxy-1,4-benzoquinone and 3-cyano-5,6-dichloro-4-hydroxy-1,2-benzoquinone.


2011 ◽  
Vol 396-398 ◽  
pp. 993-996
Author(s):  
Xi Shi Tai

A novel ligand containing sulfonic has been synthesized using 2-formylbenzenesulfonic sodium and 3-thiosemicarbazide as starting materials, and a Er (III) complex was synthesized. The ligand was characterized by element analysis and IR spectrum. The crystal structure of the Er (III) complex was determined by X-ray single crystal diffraction. The results showed that the compound was triclinic, with P-1, a = 1.0596(4) nm, b = 1.3700(5) nm, c = 1.8305(7) nm, V = 2.4726(16) nm3, Z=2, M r= 1244.42, De =1.671 g/cm3, T = 273(2) K, F (000) = 1270, R = 0.0517 and wR = 0.1124. The complex forms two-dimensional layered structure through hydrogen bonds and π-π stacking.


2006 ◽  
Vol 62 (5) ◽  
pp. o1868-o1869 ◽  
Author(s):  
Yan-Bo Weng ◽  
Jing-Kang Wang ◽  
Yan-Fei Wang

The title compound, C19H14N2O2, is a highly effective nematicide. No inter- or intramolecular hydrogen bonds are observed in the crystal structure.


Sign in / Sign up

Export Citation Format

Share Document