Solid-state supramolecular architecture of carbenoxolone – comparative studies with glycyrrhetinic and glycyrrhizic acids

Author(s):  
Ewa Tykarska ◽  
Maria Gdaniec

Carbenoxolone (CBXH2), a pharmaceutically relevant derivative of glycyrrhetinic acid, was studied by X-ray crystallography. The crystal structures of its unsolvated form, propionic acid and dimethoxyethane solvates and a solvated cocrystal of the free acid with its monobasic sodium salt CBXH2·CBXHNa·(butan-2-one)2·2H2O reveal that the recurring motif of supramolecular architecture in all crystal forms is a one-dimensional ribbon with closely packed triterpene fragments. It does not result from strong specific interactions but solely from van der Waals interactions. The ribbons are further arranged into diverse layer-type aggregates with a hydrophobic interior (triterpene skeletons) and hydrophilic surfaces covered with carboxylic/carboxylate groups. Solvent molecules included at the interface between the layers influence hydrogen-bonding interactions between the carbenoxolone molecules and organization of the ribbons within the layer. Comparison of crystal structures of carbenoxolone, glycyrrhizic acid and its aglycone–glycyrrhetinic acid have shown the impact of the size and hydrophilic character of the substituent at the triterpene C3 atom on the supramolecular architecture of these three closely related molecules.

2000 ◽  
Vol 65 (12) ◽  
pp. 1950-1958 ◽  
Author(s):  
Michal Hušák ◽  
Bohumil Kratochvíl ◽  
Ivana Císařová ◽  
Alexandr Jegorov

Two isomorphous clathrates formed by dihydrocyclosporin A or cyclosporin V with tert-butyl methyl ether are reported and compared with the structures of related P21-symmetry cyclosporin clathrates. The cyclosporin molecules in both structures are associated via van der Waals interactions forming cavities occupied by solvent molecules (cyclosporin : tert-butyl methyl ether is 1 : 2).


Author(s):  
Dominik Langer ◽  
Barbara Wicher ◽  
Wojciech Szczołko ◽  
Maria Gdaniec ◽  
Ewa Tykarska

The crystal structures of three ester derivatives of glycyrrhetinic acid (GE) are reported. X-ray crystallography revealed that despite differences in the size of the ester substituents (ethyl, isopropyl and 2-morpholinoethyl) the scheme of molecular self-assembly is similar in all three cases but differs significantly from that observed in other known GE esters. According to our analysis, the two basic patterns of self-assembly of GE esters observed in their unsolvated crystals correspond to two distinct orientations of the ester groups relative to the triterpene backbone. Moreover, comparison of the self-assembly modes of GE esters in their unsolvated forms with the supramolecular organization of GE and carbenoxolone in their solvated crystals revealed that ester substituents replace solvent molecules hydrogen bonded to the COOH group at the triterpene skeleton, resulting in similar packing arrangements of these compounds.


Author(s):  
Fredrik Lundvall ◽  
Mats Tilset

The title compound, {[MgPtCl2(C12H6N2O4)(C3H7NO)2(H2O)]·C3H7NO}n, is a one-dimensional coordination polymer. The structure consists of Pt-functionalized bipyridine ligands connected by MgIIcations, as well as coordinating and non-coordinating solvent molecules. The PtIIcation is coordinated by the two N atoms of the bipyridine moiety and two Cl atoms in a square-planar fashion. This coordination induces an in-plane bend along the bipyridine backbone of approximately 10° from the linear ideal of a conjugated π-system. Likewise, the coordination to the MgIIcation induces a significant bowing of the plane of the bipyridine of about 12°, giving it a distinct curved appearance. The carboxylate groups of the bipyridine ligand exhibit moderate rotations relative to their parent pyridine rings. The MgIIcation has a fairly regular octahedral coordination polyhedron, in which three vertices are occupied by O atoms from the carboxylate groups of three different bipyridine ligands. The remaining three vertices are occupied by the O atoms of two dimethylformamide (DMF) molecules and one water molecule. The one-dimensional chains are oriented in the [01-1] direction, and non-coordinating DMF molecules can be found in the space between the chains. The shortest intermolecular O...H contacts are 2.844 (4) and 2.659 (4) Å, suggesting moderate hydrogen-bonding interactions. In addition, there is a short intermolecular Pt...Pt contact of 3.491 (1) Å, indicating a Pt stacking interaction. Some structure-directing contribution from the hydrogen bonding and Pt...Pt interaction is probable. However, the crystal packing seems to be directed primarily by van der Waals interactions.


2021 ◽  
Author(s):  
Stéphane Baeriswyl ◽  
Hippolyte Personne ◽  
Ivan Di Bonaventura ◽  
Thilo Köhler ◽  
Christian van Delden ◽  
...  

We report the first X-ray crystal structures of mixed chirality α-helices comprising only natural residues as the example of bicyclic and linear membrane disruptive amphiphilic antimicrobial peptides containing seven l- and four d-residues.


2003 ◽  
Vol 58 (9) ◽  
pp. 916-921 ◽  
Author(s):  
Amitabha Datta ◽  
Samiran Mitra ◽  
Georgina Rosair

Two new bimetallic complexes [Zn(phen)3][Fe(CN)5(NO)] · 2 H2O · 0.25 MeOH, (1) and [(bipy)2(H2O)Zn(μ-NC)Fe(CN)4(NO)] · 0.5 H2O, (2), have been isolated (where phen = 1,10-phenanthroline and bipy = bipyridyl) and characterised by X-ray crystallography [as the 2 H2O · 0.25 CH3OH solvate for (1) and hemihydrate for (2)] infrared spectroscopy and thermogravimetric analysis. Substitution of phenanthroline for bipyridyl resulted in a cyano-bridged bimetallic species rather than two discrete mononuclear metal complexes. The bond angles of Fe-N-O were shown to be practically linear for both 1 [179.2(7)°] and 2 [178.3(3)°], and the Zn atoms have distorted octahedral geometry. The solvent molecules in both crystal lattices take part in forming hydrogen-bonded networks.


2001 ◽  
Vol 79 (3) ◽  
pp. 263-271
Author(s):  
Paul K Baker ◽  
Michael GB Drew ◽  
Deborah S Evans

Reaction of [WI2(CO)3(NCMe)2] with two equivalents of 1-phenyl-1-propyne (MeC2Ph) in CH2Cl2, and in the absence of light, gave the bis(1-phenyl-1-propyne) complex [WI2(CO)(NCMe)(η2-MeC2Ph)2] (1) in 77% yield. Treatment of equimolar quantities of 1 and NCR (R = Et, i-Pr, t-Bu, Ph) in CH2Cl2 afforded the nitrile-exchanged products, [WI2(CO)(NCR)(η2-MeC2Ph)2] (2-5) (R = Et (2), i-Pr (3), t-Bu (4), Ph (5)). Complexes 1, 2, and 5 were structurally characterized by X-ray crystallography. All three structures have the same pseudo-octahedral geometry, with the equatorial sites being occupied by cis and parallel alkyne groups, which are trans to the cis-iodo groups. The trans carbon monoxide and acetonitrile ligands occupy the axial sites. In structures 1 and 2, the methyl and phenyl substituents of the 1-phenyl-1-propyne ligands are cis to each other, whereas for the bulkier NCPh complex (5), the methyl and phenyl groups are trans to one another. This is the first time that this arrangement has been observed in the solid state in bis(alkyne) complexes of this type.Key words: bis(1-phenyl-1-propyne), carbonyl, nitrile, diiodo, tungsten(II), crystal structures.


2013 ◽  
Vol 69 (11) ◽  
pp. 1225-1228 ◽  
Author(s):  
Sara Wyss ◽  
Irmgard A. Werner ◽  
W. Bernd Schweizer ◽  
Simon M. Ametamey ◽  
Selena Milicevic Sephton

Hydrolysis of the methyl ester (±)-threo-methyl phenidate afforded the free acid in 40% yield,viz.(±)-threo-ritalinic acid, C13H17NO2. Hydrolysis and subsequent crystallization were accomplished at pH values between 5 and 7 to yield colourless prisms which were analysed by X-ray crystallography. Crystals of (±)-threo-ritalinic acid belong to theP21/nspace group and form intermolecular hydrogen bonds. An antiperiplanar disposition of the H atoms of the (HOOC—)CH—CHpygroup (py is pyridine) was found in both the solid (diffraction analysis) and solution state (NMR analysis). It was also determined that (±)-threo-ritalinic acid conforms to the minimization of negativegauche+–gauche−interactions.


2014 ◽  
Vol 70 (2) ◽  
pp. m35-m35
Author(s):  
Jing-Wei Dai ◽  
Zhao-Yang Li ◽  
Osamu Sato

In the title complex, [Fe(NCS)2(C18H18N4)], the FeIIcation is chelated by a tris(2-pyridylmethyl)amine ligand and coordinated by two thiocyanate anions in a distorted N6octahedral geometry. In the crystal, weak C—H...S hydrogen bonds and π–π stacking interactions between parallel pyridine rings of adjacent molecules [centroid–centroid distance = 3.653 (3) Å] link the molecules into a two-dimensional supramolecular architecture. The structure contains voids of 124 (9) Å3, which are free of solvent molecules.


2014 ◽  
Vol 70 (5) ◽  
pp. 517-521
Author(s):  
Yu-Xiu Jin ◽  
Fang Yang ◽  
Li-Min Yuan ◽  
Chao-Guo Yan ◽  
Wen-Long Liu

In poly[[μ3-2,2′-(disulfanediyl)dibenzoato-κ5 O:O,O′:O′′,O′′′](1,10-phenanthroline-κ2 N,N′)cadmium(II)], [Cd(C14H8O4S2)(C12H8N2)] n , the asymmetric unit contains one CdII cation, one 2,2′-(disulfanediyl)dibenzoate anion (denoted dtdb2−) and one 1,10-phenanthroline ligand (denoted phen). Each CdII centre is seven-coordinated by five O atoms of bridging/chelating carboxylate groups from three dtdb2− ligands and by two N atoms from one phen ligand, forming a distorted pentagonal–bipyramidal geometry. The CdII cations are bridged by dtdb2− anions to give a two-dimensional (4,4) layer. The layers are stacked to generate a three-dimensional supramolecular architecture via a combination of aromatic C—H...π and π–π interactions. The thermogravimetric and luminescence properties of this compound were also investigated.


1987 ◽  
Vol 40 (7) ◽  
pp. 1147 ◽  
Author(s):  
EJ Oreilly ◽  
G Smith ◽  
CHL Kennard ◽  
TCW Mak

The crystal structures of (2-formyl-6-methoxyphenoxy)acetic acid (1), diaquabis [(2-formyl-6-methoxyphenoxy) acetato ]zinc(11) (2), tetraaquabis [(2-chlorophenoxy) acetato ]zinc(11) (3), triaquabis [(2-chlorophenoxy) acetato ]cadmium(11) dihydrate (4) and lithium (2-chloro- phenoxy )acetate 1.5 hydrate (5) have been determined by X-ray diffraction. The acid (1) forms centrosymmetric hydrogen-bonded cyclic dimers [O…0, 2.677(6) �] which are non-planar. Complex (2) is six-coordinate with two waters [Zn- Ow , 1.997(2) �] and four oxygens from two asymmetric bidentate carboxyl groups [Zn-O, 2.073, 2.381(2) �] completing a skew trapezoidal bipyramidal stereochemistry. Complex (5) is also six-coordinate but is octahedral, with two trans-related unidentate carboxyl oxygens [mean Zn-O, 2.134(9) �] and four waters [mean Zn-O, 2.081(9) �]. The seven-coordinate complex (4) has crystallographic twofold rotational symmetry relating two :symmetric bidentate acid ligands [ Cd -O, 2.26, 2 48(:) �] and two waters [ Cd -O, 2.34(2) �] while the third water lies on this axis [ Cd -O, 2.27(2) �]. In contrast to the monomers (2)-(4), complex (5) is polymeric with tetrahedral lithium coordinated to one water and three carboxylate oxygens [mean Li-0, 1.95(1) �]. The essential conformation of the free acid is retained in complexes (2), (3) and (4) but in (5), it is considerably changed.


Sign in / Sign up

Export Citation Format

Share Document