scholarly journals New superprotonic crystals with dynamically disordered hydrogen bonds: cation replacements as the alternative to temperature increase

Author(s):  
Elena V. Selezneva ◽  
Irina P. Makarova ◽  
Inna A. Malyshkina ◽  
Nadezhda D. Gavrilova ◽  
Vadim V. Grebenev ◽  
...  

Investigations of new single crystals grown in the K3H(SO4)2–(NH4)3H(SO4)2–H2O system from solutions with different K:NH4 concentration ratios have been carried out. Based on the X-ray diffraction data, the atomic structure of the crystals was determined at room temperature taking H atoms into account. It has been determined that [K0.43(NH4)0.57]3H(SO4)2 crystals are trigonal at ambient conditions such as the superprotonic phase of (NH4)3H(SO4)2 at high temperature. A distribution of the K and N atoms in the crystal was modelled on the basis of the refined occupancies of K/N positions. Studies of dielectric properties over the temperature range 223–353 K revealed high values of conductivity of the crystals comparable with the conductivity of known superprotonic compounds at high temperatures, and an anomaly corresponding to a transition to the phase with low conductivity upon cooling.

2004 ◽  
Vol 82 (2) ◽  
pp. 301-305 ◽  
Author(s):  
Kenneth CW Chong ◽  
Brian O Patrick ◽  
John R Scheffer

When crystals of 9-tricyclo[4.4.1.0]undecalyl-4-(carbomethoxy)phenyl ketone (1) were allowed to stand in the dark for extended periods of time at room temperature, the compound underwent a thermal reaction — the enolene rearrangement — to afford enol 2. The crystals remained transparent and appeared unchanged in shape as the reaction proceeded. X-ray diffraction data were collected on single crystals containing 17%, 25%, 66%, and 100% of the enol. The crystal structure of a simple enol was obtained via this novel single-crystal-to-single-crystal enolene rearrangement.Key words: single crystal, thermal, rearrangement, enol, enolene.


2015 ◽  
Vol 70 (4) ◽  
pp. 207-214 ◽  
Author(s):  
Daniela Vitzthum ◽  
Stefanie A. Hering ◽  
Lukas Perfler ◽  
Hubert Huppertz

AbstractOrthorhombic dysprosium orthogallate DyGaO3 and trigonal gallium orthoborate GaBO3 were synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8.5 GPa/1350 °C and 8 GPa/700 °C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data collected at room temperature. The orthorhombic dysprosium orthogallate crystallizes in the space group Pnma (Z = 4) with the parameters a = 552.6(2), b = 754.5(2), c = 527.7(2) pm, V = 0.22002(8) nm3, R1 = 0.0309, and wR2 = 0.0662 (all data) and the trigonal compound GaBO3 in the space group R3̅c (Z = 6) with the parameters a = 457.10(6), c = 1419.2(3) pm, V = 0.25681(7) nm3, R1 = 0.0147, and wR2 = 0.0356 (all data).


2010 ◽  
Vol 65 (10) ◽  
pp. 1206-1212 ◽  
Author(s):  
Almut Haberer ◽  
Reinhard Kaindl ◽  
Hubert Huppertz

The praseodymium orthoborate λ -PrBO3 was synthesized from Pr6O11, B2O3, and PrF3 under high-pressure / high-temperature conditions of 3 GPa and 800 °C in a Walker-type multianvil apparatus. The crystal structure was determined on the basis of single-crystal X-ray diffraction data, collected at room temperature. The title compound crystallizes in the orthorhombic aragonite-type structure, space group Pnma, with the lattice parameters a = 577.1(2), b = 506.7(2), c = 813.3(2) pm, and V = 0.2378(2) nm3, with R1 = 0.0400 and wR2 = 0.0495 (all data). Within the trigonal-planar BO3 groups, the average B-O distance is 137.2 pm. The praseodymium atoms are ninefold coordinated by oxygen atoms.


2011 ◽  
Vol 66 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Stephanie C. Neumair ◽  
Johanna S. Knyrim ◽  
Oliver Oeckler ◽  
Reinhard Kaindl ◽  
Hubert Huppertz

The cubic iron hydroxy boracite Fe3B7O13OH・1.5H2O was synthesized from Fe2O3 and B2O3 under high-pressure/high-temperature conditions of 3 GPa and 960 °C in a modified Walker-type multianvil apparatus. The crystal structure was determined at room temperature by X-ray diffraction on single crystals. It crystallizes in the cubic space group F4̄3c (Z = 8) with the parameters a = 1222.4(2) pm, V = 1.826(4) nm3, R1 = 0.0362, and wR2 = 0.0726 (all data). The B-O network is similar to that of other cubic boracites.


2006 ◽  
Vol 62 (5) ◽  
pp. i109-i111 ◽  
Author(s):  
Akihiko Nakatsuka ◽  
Yuya Ikeda ◽  
Noriaki Nakayama ◽  
Tadato Mizota

Single crystals of cobalt digallium tetraoxide, CoGa2O4, have been grown by cooling slowly a 1:1 mixture of CoO and Ga2O3 from 1473 K to room temperature under the presence of a PbF2 flux. The compound crystallizes with the cubic spinel structure (space group Fd\overline{3}m). The occupancy refinement based on single-crystal X-ray diffraction data shows CoGa2O4 to be a largely normal spinel with an inversion parameter of 0.575 (4), resulting in a structural formula of IV(Co0.425Ga0.575)VI[Co0.575Ga1.425]O4, where IV() and VI[] represent the tetrahedral and the octahedral sites, respectively.


Author(s):  
Karolina Schwendtner ◽  
Uwe Kolitsch

The crystal structures of hydrothermally synthesized silver(I) aluminium bis[hydrogen arsenate(V)], AgAl(HAsO4)2, silver(I) gallium bis[hydrogen arsenate(V)], AgGa(HAsO4)2, silver gallium diarsenate(V), AgGaAs2O7, and sodium gallium diarsenate(V), NaGaAs2O7, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of the MCV-3 structure type known for KSc(HAsO4)2, which is characterized by a three-dimensional anionic framework of corner-sharing alternatingM3+O6octahedra (M= Al, Ga) and singly protonated AsO4tetrahedra. Intersecting channels parallel to [101] and [110] host the Ag+cations, which are positionally disordered in the Ga compound, but not in the Al compound. The hydrogen bonds are relatively strong, with O...O donor–acceptor distances of 2.6262 (17) and 2.6240 (19) Å for the Al and Ga compounds, respectively. The two diarsenate compounds are representatives of the NaAlAs2O7structure type, characterized by an anionic framework topology built ofM3+O6octahedra (M= Al, Ga) sharing corners with diarsenate groups, andM+cations (M= Ag) hosted in the voids of the framework. Both structures are characterized by a staggered conformation of the As2O7groups.


2019 ◽  
Author(s):  
Chem Int

Optically transparent single crystals of potassium acid phthalate (KAP, 0.5 g) 0.05 g and 0.1 g (1 and 2 mol %) trytophan were grown in aqueous solution by slow evaporation technique at room temperature. Single crystal X- ray diffraction analysis confirmed the changes in the lattice parameters of the doped crystals. The presence of functional groups in the crystal lattice has been determined qualitatively by FTIR analysis. Optical absorption studies revealed that the doped crystals possess very low absorption in the entire visible region. The dielectric constant has been studied as a function of frequency for the doped crystals. The thermal stability was evaluated by TG-DSC analysis.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


1988 ◽  
Vol 133 ◽  
Author(s):  
K. S. Kumar ◽  
S. K. Mannan

ABSTRACTThe mechanical alloying behavior of elemental powders in the Nb-Si, Ta-Si, and Nb-Ta-Si systems was examined via X-ray diffraction. The line compounds NbSi2 and TaSi2 form as crystalline compounds rather than amorphous products, but Nb5Si3 and Ta5Si3, although chemically analogous, respond very differently to mechanical milling. The Ta5Si3 composition goes directly from elemental powders to an amorphous product, whereas Nb5Si3 forms as a crystalline compound. The Nb5Si3 compound consists of both the tetragonal room-temperature α phase (c/a = 1.8) and the tetragonal high-temperature β phase (c/a = 0.5). Substituting increasing amounts of Ta for Nb in Nb5Si3 initially stabilizes the α-Nb5Si3 structure preferentially, and subsequently inhibits the formation of a crystalline compound.


Author(s):  
Sehrish Akram ◽  
Arshad Mehmood ◽  
Sajida Noureen ◽  
Maqsood Ahmed

Thermal-induced transformation of glutamic acid to pyroglutamic acid is well known. However, confusion remains over the exact temperature at which this happens. Moreover, no diffraction data are available to support the transition. In this article, we make a systematic investigation involving thermal analysis, hot-stage microscopy and single-crystal X-ray diffraction to study a one-pot thermal transition of glutamic acid to pyroglutamic acid and subsequent self-cocrystallization between the product (hydrated pyroglutamic acid) and the unreacted precursor (glutamic acid). The melt upon cooling gave a robust cocrystal, namely, glutamic acid–pyroglutamic acid–water (1/1/1), C5H7NO3·C5H9NO4·H2O, whose structure has been elucidated from single-crystal X-ray diffraction data collected at room temperature. A three-dimensional network of strong hydrogen bonds has been found. A Hirshfeld surface analysis was carried out to make a quantitative estimation of the intermolecular interactions. In order to gain insight into the strength and stability of the cocrystal, the transferability principle was utilized to make a topological analysis and to study the electron-density-derived properties. The transferred model has been found to be superior to the classical independent atom model (IAM). The experimental results have been compared with results from a multipolar refinement carried out using theoretical structure factors generated from density functional theory (DFT) calculations. Very strong classical hydrogen bonds drive the cocrystallization and lend stability to the resulting cocrystal. Important conclusions have been drawn about this transition.


Sign in / Sign up

Export Citation Format

Share Document