Low-temperature investigation of natural iron-rich oxoborates vonsenite and hulsite: thermal deformations of crystal structure, strong negative thermal expansion and cascades of magnetic transitions

Author(s):  
Yaroslav P. Biryukov ◽  
Almaz L. Zinnatullin ◽  
Mikhail A. Cherosov ◽  
Andrey P. Shablinskii ◽  
Roman V. Yusupov ◽  
...  

This work is devoted to an investigation of the magnetic properties and thermal behaviour of the natural oxoborates vonsenite and hulsite in the temperature range 5–500 K. The local environment, the oxidation states of the Fe and Sn atoms, and the charge distribution were determined using Mössbauer spectroscopy and are in accordance with a refinement of the crystal structure of hulsite from single-crystal X-ray diffraction data (SCXRD) in anisotropic approximation for the first time. The magnetic properties were studied by vibrating sample magnetometry (VSM) (5 ≤ T ≤ 400 K) and are reported for the first time for iron-rich hulsite. Both oxoborates show a very complex magnetic behaviour. Cascades of magnetic transitions are revealed and the critical temperatures were determined. The sequences of magnetic transitions in both vonsenite and hulsite with increasing temperature were found to be as follows: magnetically ordered state → partial magnetic ordering → paramagnetic state. According to X-ray diffraction data (93 ≤ T ≤ 500 K), these processes are accompanied by anomalies in the unit-cell parameters and thermal expansion of the oxoborates at critical temperatures. A strong negative volume thermal expansion is observed for both oxoborates at temperatures below ∼120 K.

2017 ◽  
Vol 81 (4) ◽  
pp. 917-922
Author(s):  
Peter Elliott

AbstractThe crystal structure of the copper aluminium phosphate mineral sieleckiite, Cu3Al4(PO4)2 (OH)12·2H2O, from the Mt Oxide copper mine, Queensland, Australia was solved from single-crystal X-ray diffraction data utilizing synchrotron radiation. Sieleckiite has monoclinic rather than triclinic symmetry as previously reported and is space group C2/m with unit-cell parameters a = 11.711(2), b = 6.9233(14), c = 9.828(2) Å, β = 92.88(3)°, V = 795.8(3) Å3and Z = 2. The crystal structure, which has been refined to R1 = 0.0456 on the basis of 1186 unique reflections with Fo > 4σF, is a framework of corner-, edge- and face- sharing Cu and Al octahedra and PO4 tetrahedra.


2013 ◽  
Vol 28 (1) ◽  
pp. 13-17 ◽  
Author(s):  
F. Laufek ◽  
A. Vymazalová ◽  
D.A. Chareev ◽  
A.V. Kristavchuk ◽  
J. Drahokoupil ◽  
...  

The (Ag,Pd)22Se6 phase was synthesized from individual elements by silica glass tube technique and structurally characterized from powder X-ray diffraction data. The (Ag,Pd)22Se6 phase crystallizes in Fm$\overline3$m symmetry, unit-cell parameters: a = 12.3169(2) Å, V = 1862.55(5) Å3, Z = 4, and Dc = 10.01 g/cm3. The crystal structure of the (Ag,Pd)22Se6 phase represents a stuffed 3a.3a.3a superstructure of the Pd structure (fcc), where only 4 from 108 available octahedral holes are occupied. Its crystal structure is related to the Cr23C6 structure type.


2015 ◽  
Vol 71 (9) ◽  
pp. 1189-1193 ◽  
Author(s):  
Yoshiki Aikawa ◽  
Hiroshi Kida ◽  
Yuichi Nishitani ◽  
Kunio Miki

Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space groupP21212, with unit-cell parametersa= 123.2,b= 152.4,c= 105.9 Å.


Author(s):  
Gohil S. Thakur ◽  
Hans Reuter ◽  
Claudia Felser ◽  
Martin Jansen

The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.


Author(s):  
Takashi Mochiku ◽  
Yoshitaka Matsushita ◽  
Nikola Subotić ◽  
Takanari Kashiwagi ◽  
Kazuo Kadowaki

RhPb2 (rhodium dilead) is a superconductor crystallizing in the CuAl2 structure type (space group I4/mcm). The Rh and Pb atoms are located at the 4a (site symmetry 422) and 8h (m.2m) sites, respectively. The crystal structure is composed of [RhPb8] antiprisms, which share their square faces along the c axis and the edges in the direction perpendicular to the c axis. We have succeeded in growing single crystals of RhPb2 and have re-determined the crystal structure on basis of single-crystal X-ray diffraction data. In comparison with the previous structure studies using powder X-ray diffraction data [Wallbaum (1943). Z. Metallkd. 35, 218–221; Havinga et al. (1972). J. Less-Common Met. 27, 169–186], the current structure analysis of RhPb2 leads to more precise unit-cell parameters and fractional coordinates, together with anisotropic displacement parameters for the two atoms. In addition and likewise different from the previous studies, we have found a slight deficiency of Rh in RhPb2, leading to a refined formula of Rh0.950 (9)Pb2.


1990 ◽  
Vol 68 (8) ◽  
pp. 1352-1356 ◽  
Author(s):  
Walter Abriel ◽  
André Du Bois ◽  
Marek Zakrzewski ◽  
Mary Anne White

The crystal structure of the title compound has been determined by single crystal X-ray diffraction data collected at 293 K, and refined to a final Rw of 0.057. The crystals are rhombohedral, space group [Formula: see text], with a = 27.134(8) Å, c = 10.933(2) Å, and Z = 18. The mole ratio of Dianin's compound (4-p-hydroxyphenyl-2,2,4-trimethylchroman) to CCl4 is 6:1. The guest molecules are disordered. X-ray powder diffraction was carried out in the temperature range from 10 to 300 K. From this, the thermal expansion coefficients for the a- and c-axes and the volume have been determined. Keywords: thermal expansion, crystal structure, clathrate.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 360 ◽  
Author(s):  
G. E. Delgado ◽  
C. Rincón ◽  
G. Marroquin

The crystal structure of the ordered vacancy compound (OVC) Cu3In5Te9 was analyzed using powder X-ray diffraction data. Several structural models were derived from the structure of the Cu-poor Cu-In-Se compound b-Cu0.39In1.2Se2 by permuting the cations in the available site positions. The refinement of the best model by the Rietveld method in the tetragonal space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3, led to Rp = 7.1 %, Rwp = 8.5 %, Rexp = 6.4 %, S = 1.3 for 162 independent reflections. This model has the following Wyckoff site atomic distribution: Cu1 in 2e (0,0,0); In1 in 2f (½,½,0), In2 in 2d (0,½,¼); Cu2-In3 in 2b (½,0,¼); in 2a (0,0,¼); Te in 8n (x,y,z).


1981 ◽  
Vol 36 (7) ◽  
pp. 833-836 ◽  
Author(s):  
Heinz-Dieter Sinnen ◽  
Hans-Uwe Schuster

AbstractIn the course of our investigations of the ternary system Rb-Au-Sn we obtained the new compound Rb4Au7Sn2. Its crystal structure has been determined by single crystal X-ray diffraction data. It crystallizes in the hexagonal (rhombohedral) space group R3̄m with unit-cell parameters a = 680.1(3) pm and c = 2909.0(7) pm, and Z = 3. The structure is similar to that of Laves-Phases of the MgCu2-type.


2005 ◽  
Vol 20 (3) ◽  
pp. 207-211 ◽  
Author(s):  
S. N. Achary ◽  
A. K. Tyagi ◽  
S. K. Kulshreshtha ◽  
O. D. Jayakumar ◽  
P. S. R. Krishna ◽  
...  

The low-cristobalite-type modification of Al0.5Ga0.5PO4 is prepared by annealing the amorphous precipitate of stoichiometric phosphate at 1300 °C. The phase purity of the sample is ascertained by powder X-ray diffraction. The crystal structure is refined by Rietveld refinements of the neutron and X-ray diffraction data of the polycrystalline powder. This compound crystallizes in an orthorhombic lattice with unit cell parameters, a=7.0295(8), b=7.0132(8), and c=6.9187(4) Å, V=341.08(6) Å3, Z=4 (Space group C 2221, No. 20). The crystal structure analysis reveals the random distribution of the Al3+ and Ga3+ having tetrahedral coordination with typical M–O (M=Al3+:Ga3+) bond lengths as 1.74 Å. Similarly, the P5+ have tetrahedral coordination with typical P–O bond lengths 1.52–1.54 Å. The Mo4 and PO4 tetraheda are linked by common corners forming a three-dimensional framework lattice. The details of the crystal structure are presented in this paper.


2021 ◽  
pp. 1-5
Author(s):  
Junyan Zhou ◽  
Congcong Chai ◽  
Munan Hao ◽  
Xin Zhong

A new organic–inorganic hybrid lithium m-phenylenediamine sulfate (LPS), Li2(C6H10N2)(SO4)2, was synthesized under aqueous solution conditions. The X-ray powder diffraction study determined that the title compound crystallized in a monoclinic system at 300 K, with unit-cell parameters a = 7.8689(6) Å, b = 6.6353(5) Å, c = 11.8322(10) Å, β = 109.385(3) °, V = 582.77(8) Å3. Indexing of the diffraction patterns collected from 100 to 600 K reveals that LPS has no structural phase transition within the measured temperature range, and the volume expansion coefficient is approximately 2.79 × 10−5 K−1. The crystal structure was solved based on the single-crystal diffraction data with space group P21/m. Lithium and SO42− are found to form quasi-two-dimensional anti-fluorite [LiSO4] layers stacking along the c-axis, with m-phenylenediamine molecules inserted in the anti-fluorite layers and forming hydrogen bonds to the SO42−. This explains a moderate anisotropic expansion in LPS.


Sign in / Sign up

Export Citation Format

Share Document