Two novel bimetallic transition metal–uranyl one-dimensional coordination polymers with manganese(II) and cobalt(II) incorporating bridging diglycolate (2,2′-oxydiacetate) ligands

2017 ◽  
Vol 73 (8) ◽  
pp. 588-592 ◽  
Author(s):  
J. August Ridenour ◽  
Mikaela M. Pyrch ◽  
Zachery J. Manning ◽  
Jeffery A. Bertke ◽  
Christopher L. Cahill

The crystal structures of two new bimetallic uranyl–transition metal compounds with diglycolic acid [or 2-(carboxymethoxy)acetic acid] have been hydrothermally synthesized and structurally characterized via single-crystal X-ray diffraction. The compounds, namely catena-poly[[[tetraaquamanganese(II)]-μ-2,2′-oxydiacetato-[dioxidouranium(VI)]-μ-2,2′-oxydiacetato] dihydrate], {[MnU(C4H4O5)2O2(H2O)4]·2H2O} n , and catena-poly[[[tetraaquacobalt(II)]-μ-2,2′-oxydiacetato-[dioxidouranium(VI)]-μ-2,2′-oxydiacetato] dihydrate], {[CoU(C4H4O5)2O2(H2O)4]·2H2O} n , both crystallize in the triclinic space group P\overline{1}. These compounds form one-dimensional chains via alternating uranyl and transition metal building units. The chains then assemble into three-dimensional supramolecular networks through several hydrogen bonds between water molecules and diglycolate ligands. Luminescence measurements were conducted and no uranyl emission was observed in either compound.

2007 ◽  
Vol 62 (2) ◽  
pp. 195-199 ◽  
Author(s):  
Dongmei Shi ◽  
Haijun Pang ◽  
Fanxia Meng ◽  
Yu Sun ◽  
Kun Liu ◽  
...  

A new organic/inorganic salt formed by mixed-valence dibenzotetrathiafulvalene (DBTTF) radical cations and the spherical Keggin-type polyoxometalate anions [H3BW12O40]2− was obtained by electrochemical oxidation of the donor in an acetonitrile and a 1,2-dichloroethane solution containing the polyanion. The compound has been characterized by X-ray diffraction, elemental analysis, EPR, IR and Raman spectroscopy. X-Ray diffraction experiments have revealed that the compound consists of heteropolyanions, water molecules and DBTTF radical cations. The organic radicals form trimers and dimers via π-π stacking; moreover, the polyoxoanions and the organic donors are also held together by hydrogen bonding interactions. In their packing arrangement, a three-dimensional supramolecular network with one-dimensional channels along the b axis is established with uncoordinated water molecules residing in the channels.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 126 ◽  
Author(s):  
Pei-Chi Cheng ◽  
Bing-Han Li ◽  
Feng-Shuen Tseng ◽  
Po-Ching Liang ◽  
Chia-Her Lin ◽  
...  

Four lithium coordination polymers, [Li3(BTC)(H2O)6] (1), [Li3(BTC)(H2O)5] (2), [Li3(BTC)(μ2-H2O)] (3), and [Li(H2BTC)(H2O)] (4) (H3BTC = 1,3,5-benzenetricarboxylatic acid), have been synthesized and characterized. All the structures have been determined using single crystal X-ray diffraction studies. Complexes 1 and 2 have two-dimensional (2-D) sheets, whereas complex 3 has three-dimensional (3-D) frameworks and complex 4 has one-dimensional (1-D) tubular chains. The crystal-to-crystal transformation was observed in 1–3 upon removal of water molecules, which accompanied the changes in structures and ligand bridging modes. Furthermore, the electrochemical properties of complexes 3 and 4 have been studied to evaluate these compounds as electrode materials in lithium ion batteries with the discharge capacities of 120 and 257 mAhg−1 in the first thirty cycles, respectively.


Author(s):  
Jun Wang ◽  
Jian-Qing Tao ◽  
Xiao-Juan Xu ◽  
Chun-Yun Tan

In the title mixed-ligand metal–organic polymeric compound, {[Cd(C14H8O6S)(C16H16N2)]·3H2O}n, the asymmetric unit contains a crystallographically unique CdIIatom, one doubly deprotonated 4,4′-sulfonyldibenzoic acid (H2SDBA) ligand, one 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) molecule and three solvent water molecules. Each CdIIcentre is six-coordinated by two O atoms from a chelating carboxylate group of a SDBA2−ligand, two O atoms from monodentate carboxylate groups of two different SDBA2−ligands and two N atoms from a chelating TMPHEN ligand. There are two coordination patterns for the carboxylate groups of the SDBA2−ligand, with one in a μ1-η1:η1chelating mode and the other in a μ2-η1:η1bis-monodentate mode. Single-crystal X-ray diffraction analysis revealed that the title compound is a one-dimensional double-chain polymer containing 28-membered rings based on the [Cd2(CO2)2] rhomboid subunit. More interestingly, a chair-shaped water hexamer cluster is observed in the compound.


2014 ◽  
Vol 936 ◽  
pp. 915-918
Author(s):  
Hui Duan Li

A novel zinc organophosphonate was synthesized under solvothermal conditions by using [piperazine-1,4-diyldi (methylene)] bis (phosphonic acid) as a organic ligand. Single-crystal X-ray diffraction analysis reveals that compound 1 crystallized in the triclinic space group P-1 (No. 2). Compound 1 formulated as Zn (O3PCH2NHC4H8NHCH2PO3)·H2O. Compound 1 featured a 3D open-framework. Notably, the structure of compound 1 featured one-dimensional channel in the [00 direction. Water molecules were located in these channels. Further characterizations of compound 1 have been performed, including X-ray powder diffraction, IR, ICP and CHN analyses.


2012 ◽  
Vol 68 (12) ◽  
pp. m336-m339 ◽  
Author(s):  
Xiao-Dan Wang ◽  
Guang-Feng Hou ◽  
Ying-Hui Yu ◽  
Jin-Sheng Gao

The title compound, {[Ni(C9H4O6)(C14H14N4)]·0.41H2O}n, exhibits a three-dimensional hydrogen-bonded supramolecular framework. The NiIIcation is six-coordinated in a distorted triangular prism defined by two N atoms from two 1,3-bis(imidazol-l-ylmethyl)benzene (bix) ligands and four O atoms from two 5-carboxybenzene-1,3-dicarboxylate (HBTC) dianions. The bix molecules and HBTC dianions both act as bidentate ligands, linking the NiIIcations to form a one-dimensional coordination polymer. A two-dimensional wave-like net is constructed by O—H...O hydrogen bonds linking adjacent chains. Partially occupied solvent water molecules fill the cavities and link these layers to form a three-dimensional supramolecular structureviaO—H...O hydrogen bonds. The title compound was also characterized by powder X-ray diffraction and thermogravimetric analysis.


Author(s):  
Monsumi Gogoi ◽  
Birinchi Kumar Das

A nickel(II) terephthalate complex, viz. [Ni(C6H4N2)2(H2O)4](O2CC6H4CO2)·4H2O, has been synthesized and studied by single-crystal X-ray diffraction. It crystallizes in the triclinic space group P\overline{1}. The crystal structure shows an approximately octahedral coordination environment of the complex with the [Ni(H2O)4(3-NCpy)2]2+ (3-NCpy is pyridine-3-carbonitrile) cation associated with four free water molecules and hydrogen bonded to a terephthalate dianion [graph set R 2 2(8)]. The supramolecular structure of the compound is stabilized by a three-dimensional array of O—H...O and O—H...N hydrogen bonds, along with π–π stacked pyridine-3-carbonitrile rings and C—H...O interactions.


2015 ◽  
Vol 1105 ◽  
pp. 335-338
Author(s):  
Qiong Wu ◽  
Jing Lu ◽  
Xiao Lin Ji ◽  
Tao Yu Zou ◽  
Zhen Fang Qiao ◽  
...  

Modifying polyoxometalates with organic and/or metal-organic moieties is a widely adopted method for broading the range of properties. In this work a new polyoxometalate constructed from Anderson-type polyoxoanions and L-arginine (Arg =L-arginine) molecules Na [CrMo6(OH)6O18]}(H2Arg)2·8H2O(1) has been synthesized via conventional method and characterized by routine techniques. Single-crystal X-Ray diffraction analysis shows that compound 1 is constructed by chiralL-arginine grafted Anderson-type clusters, sodium cation and water molecules which are further stabilized by hydrogen bonding interactions constitute 3D supramolecular networks. In addition, both antitumor behavior and photocatalytic activities of compound 1 were investigated.


2000 ◽  
Vol 55 (3-4) ◽  
pp. 299-316 ◽  
Author(s):  
Dagmar Henschel ◽  
Karna Wijaya ◽  
Oliver Moers ◽  
Armand Blaschette ◽  
Peter G. Jones

Abstract In a study aim ed at the „deconstruction“ of the supramolecular aggregate 3(18C6) · 2HN( SO2Me)2 (1,18C6 = 18-crown-6), which is known to display a ladder structure with two isotactic [18C6 - Me SO2N(H)SO2Me···)∞ polymers forming the uprights and symmetrically N - H···O bonded 18C6 rings providing the rungs, the following crystalline complexes were isolated and (except for 2b) characterized by low-temperature X-ray diffraction: 18C6-ClN (SO2Me)2 (2a, triclinic, space group P1̅, Z = 2), 18C6-PhN (SO2Me)2 (2b), 18C6 -MeN(SO2Me)2 (3, monoclinic, P21/c, Z = 8), Bz18C6-HN(SO2Me)2 (4, Bz18C6 = benzo-18-crown-6, monoclinic, P21/n, Z = 4), 18C6-2 MeN (SO2Me)2 (5, triclinic, P1̅, Z = 1), 18C6-Me2SO- HN( SO2Me) (SO2Ph) (13, triclinic, P1̅, Z = 2), and 18C6-H2OMe2SO·2HN(SO2Me)2 (14, triclinic, P1̅, Z = 2). Each of the one-dimensional polymers 2a (syndiotactic), 3 (disyndiotactic) and 4 (isotactic) mimics a single upright of 1; in contrast to 1 and 2a, where the intra-catemer connectivity solely relies on S - Me ··· crow n and crown ··· O = S hydrogen bonds, this bonding system is reinforced in 3 by N -Me ··· crown and in 4 by N - H ··· crown hydrogen bonds. Complex 5 is monomeric and matches a fragment formally extruded from the catemer 3; moreover, 3 and 5 represent a rare case of two structurally characterized 18C6 complexes containing the same uncharged guest species in distinct molecular ratios. The surprising structure of the quaternary adduct 14 exhibits an [18C6 ··· MeSO2N(H)SO2Me ··· ]∞ chain, which can be regarded both as an isolated, though unmodified upright from the ladder 1 and, being syndiotactic, as a stereochemical analogue of 2a; the potentially rung-forming *NH functions in the chain are blocked by hydrogenbonded side chains of the type * N - H ··· water ··· sulfoxide ··· H - N (SO2Me)2. The ternary complex 13 consists of chains [18C6 ··· Me2SO ··· H - N (SO2Ph)SO2Me···]∞ and is not closely related to the other structures


2015 ◽  
Vol 71 (3) ◽  
pp. 222-228 ◽  
Author(s):  
Mohamed Abdellatif Bensegueni ◽  
Aouatef Cherouana ◽  
Slimane Dahaoui

Two alkaline earth–tetrazole compounds, namelycatena-poly[[[triaquamagnesium(II)]-μ-5,5′-(azanediyl)ditetrazolato-κ3N1,N1′:N5] hemi{bis[μ-5,5′-(azanediyl)ditetrazolato-κ3N1,N1′:N2]bis[triaquamagnesium(II)]} monohydrate], {[Mg(C2HN9)(H2O)3][Mg2(C2HN9)2(H2O)6]0.5·H2O}n, (I), and bis[5-(pyrazin-2-yl)tetrazolate] hexaaquamagnesium(II), (C5H3N6)[Mg(H2O)6], (II), have been prepared under hydrothermal conditions. Compound (I) is a mixed dimer–polymer based on magnesium ion centres and can be regarded as the first example of a magnesium–tetrazolate polymer in the crystalline form. The structure shows a complex three-dimensional hydrogen-bonded network that involves magnesium–tetrazolate dimers, solvent water molecules and one-dimensional magnesium–tetrazolate polymeric chains. The intrinsic cohesion in the polymer chains is ensured by N—H...N hydrogen bonds, which formR22(7) rings, thus reinforcing the propagation of the polymer chain along theaaxis. The crystal structure of magnesium tetrazole salt (II) reveals a mixed ribbon of hydrogen-bonded rings, of typesR22(7),R22(9) andR24(10), running along thecaxis, which are linked byR24(16) rings, generating a 4,8-cflunet.


Author(s):  
Nives Politeo ◽  
Mateja Pisačić ◽  
Marijana Đaković ◽  
Vesna Sokol ◽  
Boris-Marko Kukovec

A 6-chloronicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4′-bipyridine (4,4′-bpy), namely, catena-poly[[[tetraaquanickel(II)]-μ-4,4′-bipyridine-κ2 N:N′] bis(6-chloronicotinate) tetrahydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O} n or {[Ni(4,4′-bpy)(H2O)4](6-Clnic)2·4H2O} n , (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-chloronicotinic acid and 4,4′-bipyridine in a mixture of water and ethanol. The molecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4′-bpy)(H2O)4]2+} n cation, two 6-chloronicotinate anions and four water molecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octahedrally coordinated by four water molecule O atoms and by two 4,4′-bipyridine N atoms in the trans position. The 4,4′-bipyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4′-bpy)(H2O)4]2+} n , the 6-chloronicotinate anions and the water molecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H...O and O—H...N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetrameric R 2 4(8) and R 4 4(10) loops, a dimeric R 2 2(8) loop and a pentameric R 4 5(16) loop.


Sign in / Sign up

Export Citation Format

Share Document