The dehydration process in the DL-phenylglycinium trifluoromethanesulfonate monohydrate crystal revealed by XRD, vibrational and DSC studies

2019 ◽  
Vol 75 (12) ◽  
pp. 1569-1579
Author(s):  
Łukasz Wołoszyn ◽  
Maria M. Ilczyszyn ◽  
Vasyl Kinzhybalo

Thermal analysis, X-ray diffraction and temperature-dependent IR spectroscopy were used to study the dehydration process of crystalline DL-phenylglycinium trifluoromethanesulfonate monohydrate (PGTFH), C8H10NO2 +·CF3SO3 −·H2O. PGTFH dehydrates in one step centred at 353 K and crystallizes in the monoclinic space group C2/c, whereas the anhydrous compound (PGTF) crystallizes in the triclinic space group P\overline{1}. The dehydration process in PGTFH is preceded by a weakening of both the noncovalent aromatic–aromatic interactions and the packing contacts. This process is accompanied by the breakage of medium-strength O—H...O hydrogen bonds between ions inside layers and a reorganization of the ions within the layers. This reorganization results in the formation of two different ion pairs (DL-phenylglycinium trifluoromethanesulfonate) and the formation of a new hydrogen-bond network. The dehydration process does not destroy the nature of the crystal structure. Both crystals, i.e. hydrated and anhydrous, have a layered structure, although the layers of each crystal are arranged somewhat differently.

2005 ◽  
Vol 60 (9) ◽  
pp. 978-983 ◽  
Author(s):  
Sevim Hamamci ◽  
Veysel T. Yilmaz ◽  
William T. A. Harrison

Two new saccharinato-silver(I) (sac) complexes, [Ag(sac)(ampy)] (1), and [Ag2(sac)2(μ-aepy)2] (2), [ampy = 2-(aminomethyl)pyridine, aepy = 2-(2-aminoethyl)pyridine], have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the monoclinic space group P21/c and triclinic space group P1̄, respectively. The silver(I) ions in both complexes 1 and 2 exhibit a distorted T-shaped AgN3 coordination geometry. 1 consists of individual molecules connected into chains by N-H···O hydrogen bonds. There are two crystallographically distinct dimers in the unit cell of 2 and in each dimer, the aepy ligands act as a bridge between two silver(I) centers, resulting in short argentophilic contacts [Ag1···Ag1 = 3.0199(4) Å and Ag2···Ag2 = 2.9894(4) Å ]. Symmetry equivalent dimers of 2 are connected by N-H···O hydrogen bonds into chains, which are further linked by aromatic π(py)···π(py) stacking interactions into sheets.


1995 ◽  
Vol 50 (1) ◽  
pp. 128-138 ◽  
Author(s):  
Dagmar Henschel ◽  
Armand Blaschette ◽  
Peter G. Jones

Complexes of Uncharged Molecules, Crystal StructureThe thermally labile ternary complexes 18C6 · 2MeOH · 2 HN(SO2Ph)2 (2a), 18C6 · 2MeOH · 2HN(SO2–C6H4-4-Cl)2 (2b) and 18C6 · 3 MeOH · HN(SO2Me)(SO2Ph) (3) were obtained by co-crystallization of 18-crown-6 (18C6) and the appropriate di(organosulfonyl)amine from methanolic solutions and characterized by low-temperature X-ray diffraction. The crystal structures of 2a (monoclinic, space group P21/n) and 2b (triclinic, space group P1̄) consist of monomeric, centrosymmetric formula units. Each di(arenesulfonyl)-amine molecule is connected to a methanol molecule by an N-Η ··· O hydrogen bond (H ··· O 203 pm in 2a, 190 pm in 2b). The methanol molecules are linked to three alternate crown oxygen atoms via one O-Η ··· O(crown) hydrogen-bond and two weaker C-Η ··· O(crown) interactions (OH ··· O 201 pm in 2a, 186 pm in 2b; CH ··· O 236 and 247 pm in 2a, 240 and 254 pm in 2b); two symmetry-related oxygen atoms of the crown are involved in O-Η ··· O and the other four in C-Η ··· O interactions. The structure of complex 3 (monoclinic, space group P21) is built of infinite chains parallel to [101]. The methyl group of the di(organosulfonyl)amine is bonded by C-Η ··· O(crown) interactions to a set of three alternate oxygen atoms of the cyclic polyether (H ··· O 228, 245 and 247 pm). Starting from the acidic NH function, a sequence of three methanol molecules catenated by hydrogen bonds curves around the bulky phenyl group and links with its terminal MeOH through one O-H ··· O(crown) and two C-Η ··· O(crown) bonds to the second set of alternate oxygen atoms in the adjacent symmetry-equivalent crown (OH ··· O 193 pm, CH ··· O 248 and 250 pm). Within the chain sequence N-H ··· O′(Me)H′ ··· O″(Me)H″ ··· O‴(Me)H, the H ··· O distances are H ··· O′ 184, H′ ··· O″ 189 and H″··· O‴ 183 pm. In the structures of 2a, 2b and 3, the crown rings adopt the frequently observed D3d pseudosymmetry.


1997 ◽  
Vol 50 (10) ◽  
pp. 991 ◽  
Author(s):  
Ian R. Whittall ◽  
Mark G. Humphrey ◽  
David C. R. Hockless

The structures of Au(4-C≡CC6H4XYC6H4-4′-NO2)(PPh3) (XY = (E )-CH=CH (1), (Z)-CH=CH (2), C≡C (3), N=CH (4)) have been determined by single-crystal X-ray diffraction analyses, refining by full-matrix least-squares analysis. For (1), crystals are triclinic, space group P-1, with a8·847(1), b 17·870(4), c 19·705(3) Å, α116·25(1), β 93·33(1), γ 92·64(2)˚, Z 4, 6747 unique reflections (703 parameters), converging at R 0·025 and Rw 0·029. For (2), crystals are monoclinic, space group P 21/a, with a 10·718(6), b 19·398(5), c14·469(3) Å, β 108·96(2)˚, Z 4, 3295 unique reflections (352 parameters), converging atR 0·040 and Rw 0·034. For (3), crystals are triclinic, space group P-1, with a 10·671(4), b 17·599(7), c 18·220(8) Å, α 116·31(3), β 105·00(4), γ 95·08(4)˚, Z 4, 4828 unique reflections (703 parameters), converging at R 0·043 and Rw 0·030. For (4), crystals are triclinic, space group P-1, with a 8·8314(6), b 17·834(2), c 20·001(2) Å, α 115·249(7), β 90·930(7), γ 94·082(7)˚, Z 4, 4724 unique reflections (703 parameters), converging at R 0·035 and Rw 0·034. Despite the [ligated metal donor]-bridge-[nitro acceptor] composition of these complexes, Au–C and C≡C distances are normal and consistent with minimal allenylidene contribution to the ground-state geometry. Within the 3σ confidence limits, the structural data do not provide evidence for π*-back-bonding in these complexes


2019 ◽  
Vol 74 (6) ◽  
pp. 479-484 ◽  
Author(s):  
Li-Ting Jiang ◽  
Xiang Chang ◽  
Sheng-Chun Chen ◽  
Xue-Jun Feng ◽  
Qun Chen

AbstractA well-known selective xanthine oxidase inhibitor topiroxostat, 4-[3-(4-pyridinyl)-1H-1,2,4-triazol-5-yl]-2-pyridinecarbonitrile (ptpc), was selected to react with Cu(NO3)2 · 3H2O in dialkylformamide solvents, affording two novel supramolecular coordination compounds [Cu(ptpc)2(NO3)(DMF)2] · NO3 (1) and Cu(ptpc)2(NO3)2(DEF)2 (2). Single-crystal X-ray diffraction revealed that compound 1 crystallizes in the monoclinic space group C2/c. The components are assembled to a 3D supramolecular framework through hydrogen-bonding interactions between the large [Cu(ptpc)2(NO3)(DMF)2]+ cationic moieties and the nitrate anions. Compound 2 crystallizes in the triclinic space group P1̅ and shows a 2D hydrogen-bonded network structure. The results clearly indicate that dialkylformamide solvents with different sizes have an important influence on the structures of the complexes. The luminescence properties of 1 and 2 in the solid state and their thermal stabilities were also investigated.


1992 ◽  
Vol 70 (3) ◽  
pp. 792-801 ◽  
Author(s):  
Jagadese J. Vittal ◽  
Philip A. W. Dean ◽  
Nicholas C. Payne

The structures of three tetramethylammonium salts containing anions of formula [(μ-SePh)6(MSePh)4]2− (M = Zn and Cd) were determined by single crystal X-ray diffraction techniques. The Zn salt crystallizes in different space groups depending upon the solvent combination used in the synthesis. Thus crystals of (Me4N)2[Zn4(SePh)10], 1, grown from a mixture of methanol, acetonitrile, and acetone are triclinic, space group [Formula: see text] with cell dimensions a = 13.214(2), b = 23.859(2), c = 13.072(1) Å, α = 91.134(8), β = 113.350(8), γ = 79.865(9)°, and Z = 2. In the absence of acetone, a solvated crystal (Me4N)2[Zn4(SePh)10]•CH3CN, 2, is formed, which belongs to the monoclinic space group P21/n with a = 14.248(1), b = 39.722(2), c = 13.408(1) Å, β = 97.132(5)°, and Z = 4. The Cd salt (Me4N)2[Cd4(SePh)10], 3, crystallizes in the monoclinic space group P21/c, with a = 20.830(2), b = 14.282(1), c = 25.872(1) Å, β = 99.626(6)°, and Z = 4. These three salts are the first examples of homoleptic, tetranuclear selenolatometal(II) anions with (μ-Se)6M4 cages of adamantane-type stereochemistry. In each case the phenyl substituents of the bridging ligands adopt the configuration [aae, aae, aee, aee], which has the minimum number of two 1,3-axial–axial non-bonding substituent interactions. Keywords: selenolate complexes, synthesis, X-ray crystallography, isomerism, adamantane stereochemistry.


Author(s):  
Sandeep Kumar ◽  
Ruchi Khajuria ◽  
Amanpreet Kaur Jassal ◽  
Geeta Hundal ◽  
Maninder S. Hundal ◽  
...  

Donor-stabilized addition complexes of nickel(II) with disubstituted diphenyldithiophosphates, [{(ArO)2PS2}2NiL2] {Ar = 2,4-(CH3)2C6H3[(1), (5)], 2,5-(CH3)2C6H3[(2), (6)], 3,4-(CH3)2C6H3[(3), (7)] and 3,5-(CH3)2C6H3[(4), (8)];L= C5H5N [(1)–(4)] and C7H9N [(5)–(8)]}, were successfully isolated and characterized by elemental analysis, magnetic moment, IR spectroscopy and single-crystal X-ray analysis. Compound (4) crystallizes in the monoclinic space groupP21/nwhereas compounds (7) and (8) crystallize in the triclinic space group P\bar 1. The single-crystal X-ray diffraction analysis of (4), (7) and (8) reveals a six-coordinated octahedral geometry for the NiS4N2chromophore. Two diphenyldithiophosphate ions act as bidentate ligands with their S atoms coordinated to the Ni centre. Each of them forms a four-membered chelate ring in the equatorial plane. The N atoms from two donor ligands are axially coordinated to the Ni atom.


1983 ◽  
Vol 38 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Bernt Krebs ◽  
Marita Hucke ◽  
Michael Hein ◽  
Andreas Schäffer

Abstract The monomeric SeOCl3- ion, which can be prepared as the tetraphenylarsonium salt from SeOCl2 and As(C6H5)4Cl, was structurally characterized by a low-temperature single crystal X-ray diffraction analysis. [As(C6H5)4]SeOCl3 is monoclinic, space group P21/c, with a = 9,332(3), b = 13,761(4), c = 18,985(6) Å, β = 110,97(3)° (at -135 °C), Z = 4; it contains a novel type of ψ-trigonal bipyramidal oxotrichloroselenate(IV) anion which is not associated to dimers or polymer chains as in known structures. The equatorial positions are occupied by doubly bonded oxygen (Se-O 1,601(3) Å) and by one Cl(Se-Cl 2,234(1) Å), the axial Se-Cl bonds (2,430(1) and 2,475(1) Å) being significantly longer. [N(C2H5)4]SeOCl3, which was obtained as crystals by oxidation of trichloroselenate(II), is triclinic, space group P1̄, with a = 10,607(3), b = 8,950(2), c = 8,862(2) Å, α = 119,79(2)°, β = 101,07(2)°, γ = 96,28(2)°, Z = 2. The X-ray structure analysis shows the anions to be present as centrosymmetric dimers Se2O2Cl62- like in the [P(C6H5)4]+ salt, with two tetragonal SeOCl4 pyramids linked through a Cl···Cl edge and the lone pairs trans to the axial Se-O bonds (1,589(4) Å). Se-Cl bond lengths are 2.270(1) and 2,351(2) Å (terminal); 2,698(1) and 2,920(1) Å (bridging). The results show that the nature of the reaction products of the Lewis acid SeOCl2 with halogenides as bases changes very sensitively with small variations in cations and environment. The vibrational spectra are discussed.


1998 ◽  
Vol 51 (3) ◽  
pp. 219 ◽  
Author(s):  
Ian R. Whittall ◽  
Mark G. Humphrey ◽  
David C. R. Hockless

The structures of Ni(C≡CR)(PPh3)(η-C5H5) (R = Ph (1), C6H4-4-NO2 (2), 4-C6H4C6H4-4′-NO2 (3), (E)-4-C6H4CH=CHC6H4-4′-NO2 (4), 4-C6H4C≡CC6H4-4′-NO2 (5), 4-C6H4N=CHC6H4-4′-NO2 (6)) have been determined by single-crystal X-ray diffraction studies, refining by full-matrix least-squares analysis. For (1), crystals are triclinic, space group P-1, with a 10·094(2), b13·429(3), c 18·835(5) Å,α 103·24(2), β 91·50(2), γ 90·10(2)°, Z 4, 5844 unique reflections (595 parameters), converging at R 0·033 and Rw 0·024. For (2), crystals are orthorhombic, space group Pna21, with a 16·799(2), b 8·681(2), c 17·485(2) Å, Z 4, 1774 unique reflections (325 parameters), converging at R 0·031 and Rw 0·029. For (3), crystals are monoclinic, space group P 21/c, with a 11·140(3), b 18·282(4), c 15·296(2) Å, β 105·18(2)°, Z 4, 3132 unique reflections (397 parameters), converging at R 0·039 and Rw 0·024. For (4), crystals are monoclinic, space group P 21/n, with a 12·929(7), b 16·953(8), c 15·601(7) Å, β 112·55(3), Z 4, 3023 unique reflections (397 parameters), converging at R 0·039 and Rw 0·025. For (5), crystals are monoclinic, space group P 21/n, with a 12·710(5), b 16·882(3), c 15·693(4) Å, β 111·37(3)°, Z 4, 3216 unique reflections (397 parameters), converging at R 0·035 and Rw 0·030. For (6), crystals are monoclinic, space group P 21/n, with a 12·594(1), b 16·936(2), c 15·611(1) Å, β 112·476(5)°, Z 4, 3564 unique reflections (397 parameters), converging at R 0·038 and Rw 0·041. For structurally characterized 18-electron (cyclopentadienyl)nickel(II) acetylide complexes, statistically insignificant decreases in the average Ni-C(1) distance and trans influence and an increase in the average C(1)-C(2) parameter are observed on introduction of an acceptor substituent at the alkynyl ligand.


2008 ◽  
Vol 63 (2) ◽  
pp. 139-142 ◽  
Author(s):  
Sevim Hamamci ◽  
Veysel T. Yilmaz ◽  
Orhan Büyükgüngör

Two new complexes [Ag(sac)(aepip)] (1) and [Ag(sac)(hepip)] (2) have been obtained by the reaction of AgNO3 with Na(sac)・2H2O (sac = saccharinate) in the presence of N-(2-aminoethyl)piperidine (aepip) and N-(2-hydroxyethyl)piperidine (hepip), and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the monoclinic space group C2 and triclinic space group P1, respectively. In both complexes, silver( I) is tricoordinated. The sac ligand is N-coordinated, while aepip and hepip behave as N-N and N-O bidentate chelating ligands, respectively. The pip rings of both aepip amd hepip ligands adopt typical ‘chair’ conformation. The individual molecules are linked into one-dimensional chains by two N-H···O hydrogen bonds in 1, and one O-H···O hydrogen bond in 2. TG-DTG curves illustrated that the endothermic elimination of aepip and hepip ligands takes place in the early stages of thermal decomposition, while that of the sac moiety occurs exothermically at higher temperatures to give metallic silver


1999 ◽  
Vol 54 (10) ◽  
pp. 1222-1228 ◽  
Author(s):  
S. Strueß ◽  
W. Preetz

By treatment of fac-[ReCl3I3]2- with (SeCN)2 indichloromethane fac-[ReCl3(NCSe)3]2- (1), mer-[ReCl3(NCSe)2cis (SeCN)]2- (2) and mer-[ReCl3I(NCSe)2cis]2- (3) are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structures of mer-(Ph-P)2[ReCl3(NCSe)2cis(SeCN)] (triclinic, space group Pl̅, a = 16.099(1), b = 16.729(3), c =21.026(2) Å, α = 70.194(10), ß = 73.958(10), γ = 83.929(10)°, Z = 4) and mer-(n-Bu4N)2[ReCl3|(NCSe)2cis] (monoclinic, space group P21/c, a = 11.838(1), b = 12.796(2), c = 30.767(2) Å, ß = 97.419(6)°, Z = 4) have been determined by single crystal X-ray diffraction analysis. Based on the molecular parameters of the X-ray determinations the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salts have been assigned by normal coordinate analysis. The valence force constants are fd(ReN) = 1.79 (1), 1.71 (2), 1.71 (3) and fd(ReSe) = 1.15 (2) mdyn/Å.


Sign in / Sign up

Export Citation Format

Share Document