A novel three-dimensional tetranuclear CoII coordination polymer with water hexamers based on the V-shaped tetracarboxylate ligand 4-(2,4-dicarboxylatophenoxy)phthalate

2020 ◽  
Vol 76 (9) ◽  
pp. 863-868
Author(s):  
Shao-Dong Li ◽  
Feng Su ◽  
Miao-Li Zhu ◽  
Li-Ping Lu

A new coordination polymer (CP), namely, poly[[diaquatris[μ2-1,4-bis(1H-imidazol-1-yl)benzene]bis[μ6-4-(2,4-dicarboxylatophenoxy)phthalato]tetracobalt(II)] hexahydrate], {[Co4(C16H6O9)2(C12H10N4)3(H2O)2]·6H2O} n , has been synthesized by solvothermal reaction. The CP was fully characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, and powder and single-crystal X-ray diffraction. It presents a three-dimensional (3D) structure based on tetranuclear CoII secondary building units (SBUs) with a tfz-d net and point symbol (43)2(46·618·84). The 4-(2,4-dicarboxyphenoxy)phthalic acid (H4dcppa) ligands are completely deprotonated and link {Co4(COO)4}4− SBUs into two-dimensional (2D) layers. Furthermore, adjacent layers are connected by 1,4-bis(1H-imidazol-1-yl)benzene (bib) ligands, giving rise to a 3D supramolecular architecture. Interestingly, there are numerous elliptical cavities in the CP where isolated unique discrete hexameric water clusters have been observed. The results of thermogravimetric and magnetic analyses are described in detail.

2018 ◽  
Vol 74 (9) ◽  
pp. 1032-1037 ◽  
Author(s):  
Shao-Dong Li ◽  
Li-Ping Lu ◽  
Miao-Li Zhu

A new cobalt(II) coordination polymer (CP), poly[[bis[μ6-4-(4-carboxylatophenoxy)benzene-1,3-dicarboxylato-κ6 O 1:O 1:O 3:O 3′:O 4:O 4′]bis(1,10-phenanthroline-κ2 N,N′)tricobalt(II)] 0.72-hydrate], {[Co3(C15H7O7)2(C12H8N2)2]·0.72H2O} n , (I), is constructed from CoII ions and 4-(4-carboxyphenoxy)isophthalate (cpoia3−) and 1,10-phenanthroline (phen) ligands. Based on centrosymmetric trinuclear [Co3(phen)2(COO)6] secondary building units (SBUs), the structure of (I) is a three-dimensional CP with a (3,6)-connected net and point symbol (42.6)2(44.62.87.102). The positions of four [Co3(phen)2(COO)6] SBUs and four cpoia3− ligands reproduce a Chinese-knot-shaped arrangement along the ab plane. (I) has been characterized by single-crystal X-ray diffraction, IR spectroscopy, powder X-ray diffraction (PXRD) and thermostability analysis. It shows a good thermal stability from room temperature to 673 K. In addition, the temperature dependence of the magnetic properties was measured.


2014 ◽  
Vol 69 (8) ◽  
pp. 859-863 ◽  
Author(s):  
Kai Cui ◽  
Ji Ma ◽  
Xian-Kuan Huo ◽  
Jian-Xun Zhang

A new coordination polymer [Zn(BDC-I2)(DMF)]n (1) has been prepared by solvothermal reaction of Zn(II) nitrate with 2,5-diiodo-1,4-benzenedicarboxylic acid (H2BDC-I2) in ethanol-DMF, and characterized by elemental analysis, IR spectroscopy and single-crystal and powder X-ray diffraction techniques. Complex 1 shows a two-dimensional network possessing dinuclear Zn2(CO2)4 secondary building units, which are further assembled into a three-dimensional supramolecular structure through intermolecular C-H···I interactions. Solid-state properties such as photoluminescence and thermal stability of 1 have also been investigated.


2019 ◽  
Vol 75 (5) ◽  
pp. 575-583 ◽  
Author(s):  
Yuting Bai ◽  
Meirong Han ◽  
Enxi Wu ◽  
Sisi Feng ◽  
Miaoli Zhu

Two three-dimensional (3D) CdII coordination polymers, namely poly[[di-μ-aqua-diaquabis{μ5-4,4′,4′′-[benzene-1,3,5-triyltris(oxy)]tribenzoato}tricadmium(II)] dihydrate], {[Cd3(C27H15O9)2(H2O)4]·2H2O} n , (I), and poly[[aqua{μ6-4,4′,4′′-[benzene-1,3,5-triyltris(oxy)]tribenzoato}(μ-formato)[μ-1,1′-(1,4-phenylene)bis(1H-imidazole)]dicadmium(II)] dihydrate], {[Cd2(C27H15O9)(C12H10N4)(HCOO)(H2O)]·2H2O} n , (II), have been hydrothermally synthesized from the reaction system containing Cd(NO3)2·4H2O and the flexible tripodal ligand 1,3,5-tris(4-carboxyphenoxy)benzene (H3tcpb) via tuning of the auxiliary ligand. Both complexes have been characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR spectra, powder X-ray diffraction and thermogravimetric analysis. Complex (I) is a 3D framework constructed from trinuclear structural units and tcpb3− ligands in a μ5-coordination mode. The central CdII atom of the trinuclear unit is located on a crystallographic inversion centre and adopts an octahedral geometry. The metal atoms are bridged by four syn–syn carboxylate groups and two μ2-water molecules to form trinuclear [Cd3(COO)4(μ2-H2O)2] secondary building units (SBUs). These SBUs are incorporated into clusters by bridging carboxylate groups to produce pillars along the c axis. The one-dimensional inorganic pillars are connected by tcpb3− linkers in a μ5-coordination mode, thus forming a 3D network; its topology corresponds to the point symbol (42.62.82)(44.62)2(45.66.84)2. In contrast to (I), complex (II) is characterized by a 3D framework based on dinuclear cadmium SBUs, i.e. [Cd2(COO)3]. The two symmetry-independent CdII ions display different coordinated geometries, namely octahedral [CdN2O4] and monocapped octahedral [CdO7]. The dinuclear SBUs are incorporated into clusters by bridging formate groups to produce pillars along the c axis. These pillars are further bridged either by tcpb3− ligands into sheets or by 1,4-bis(imidazol-1-yl)benzene ligands into undulating layers, and finally these two-dimensional surfaces interweave, forming a 3D structure with the point symbol (4.62)(47.614). Compound (II) exhibits reversible I2 uptake of 56.8 mg g−1 with apparent changes in the visible colour and the UV–Vis and fluorescence spectra, and therefore may be regarded as a potential reagent for the capture and release of I2.


2013 ◽  
Vol 803 ◽  
pp. 80-84
Author(s):  
Yu Qi Liu ◽  
Yong Yang ◽  
Rui Yang ◽  
Xiao Jun Xu

A novel metalorganic coordination polymer, namely [Co3(bpd)5.5(NCS)6(NH3)]n2H2O (1) (bpd=1,4-bis (4-pyridyl)-2,3-diaza-1,3-butadiene), has been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction. Compound 1 presents 2D[3,4,-connected 3-nodal net with the point symbol (4268210)(4462)(8210). In addition, four identical 2D single nets is interlocked with each other in parallel, thus directly leading to the formation of a polycatenated layer (2D2D).


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


Crystals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 372
Author(s):  
Mei-An Zhu ◽  
Shuai-Shuai Han ◽  
Feng Deng ◽  
Jia-Le Li ◽  
Shui-Sheng Chen

The coordination polymer, namely, [Cd(H2L)(nobda)]n (1) was prepared by the reaction of Cd(NO3)2·4H2O with 4-amino-1,2-benzenedicarboxylic acid (H2nobda) and 1,4-di(1H-imidazol-4-yl)benzene (H2L), and characterized by single-crystal X-ray diffraction, elemental analysis, infrared (IR) spectroscopy, thermogravimetric analysis, and powder X-ray diffraction (PXRD). The carboxylic acid of H2nobda ligands was completely deprotonated to be nobda2− anions, which act as tridentate ligand to connect the Cd2+ to form two-dimensional (2D) network, while the neutral H2L ligands serve as a linear didentate bridge to connect two adjacent Cd2+ ions upper and down the 2D layer. The adjacent 2D layers were further linked into the three-dimensional (3D) supramolecular polymer by the weak interactions such as hydrogen bonds and π−π stacking interactions. The ultraviolet-visible (UV-vis) absorption spectra and luminescent properties in the solid state at room temperature have been investigated.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Xie ◽  
Jie Wu ◽  
Xiaochun Hang ◽  
Honghai Zhang ◽  
Kang shen ◽  
...  

By employment of amino-functionalized dicarboxylate ligands to react with d10 metal ions, four novel metal-organic frameworks (MOFs) were obtained with the formula of {[Cd(BCPAB)(μ2-H2O)]}n (1), {[Cd(BDAB)]∙2H2O∙DMF}n (2), {[Zn(BDAB)(BPD)0.5(H2O)]∙2H2O}n (3) and {[Zn(BDAB)(DBPB)0.5(H2O)]∙2H2O}n (4) (H2BCPAB = 2,5-bis(p-carbonylphenyl)-1-aminobenzene; H2BDAB = 1,2-diamino-3,6-bis(4-carboxyphenyl)benzene); BPD = (4,4′-bipyridine); DBPB = (E,E-2,5-dimethoxy-1,4-bis-[2-pyridin-vinyl]-benzene; DMF = N,N-dimethylformamide). Complex 1 is a three-dimensional (3D) framework bearing seh-3,5-Pbca nets with point symbol of {4.62}{4.67.82}. Complex 2 exhibits a 4,4-connected new topology that has never been reported before with point symbol of {42.84}. Complex 3 and 4 are quite similar in structure and both have 3D supramolecular frameworks formed by 6-fold and 8-fold interpenetrated 2D coordination layers. The structures of these complexes were characterized by single crystal X-ray diffraction (SC-XRD), thermal gravimetric analysis (TGA) and powder X-ray diffraction (PXRD) measurements. In addition, the fluorescence properties and the sensing capability of 2–4 were investigated as well and the results indicated that complex 2 could function as sensor for Cu2+ and complex 3 could detect Cu2+ and Ag+via quenching effect.


2018 ◽  
Vol 41 (3-4) ◽  
pp. 129-133 ◽  
Author(s):  
De-Gui Shu ◽  
Wen-Yu Chen

Abstract Here, a new indium (In)-based coordination polymer [In(hip)](DMF)2(H2O)3 (1, DMF=N,N-dimethylformamide) was successfully prepared by a solvothermal reaction of In(NO3)3·6H2O and 5-hydroxyisophthalic acid (H3hip) in a mixed solvent of DMF and H2O with the presence of NaCl as a template. Complex 1 was characterized by elemental analysis (EA), single-crystal X-ray crystallography, and powder X-ray diffraction (PXRD), and the results reveal that complex 1 shows a two-dimensional (2D) grid-like network with considerable solvent accessible volume that was generated from the packing of the 2D layers via the AB pattern. Furthermore, complex 1 could be downsized into nanoscale particles with the aid of polyvinylpyrrolidone (PVP). In addition, the anticancer activities of 1 and the nanoscale 1 were probed via the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay.


2020 ◽  
Vol 42 (2) ◽  
pp. 249-249
Author(s):  
Guo Jun Wu Guo Jun Wu

[Cu(L)(AIP)·1.5H2O]n (1) [L= 3,5-di(benzimidazol-1-yl)pyridine, H2AIP= 5-aminoisophthalic acid] was prepared by the solvothermal reaction, which was characterized by single-crystal X–ray diffraction, infrared spectroscopy, and elemental analysis. 1 exhibits an infinite two dimensional [Cu(AIP)]n sheet parallel to (0 1 1) crystal plane. Furthermore, complex 1 displays good photocatalytic degradation of methyl blue (MB).


2019 ◽  
Vol 75 (5) ◽  
pp. 508-513 ◽  
Author(s):  
Bin Xu ◽  
Fuming Luo ◽  
Guodong Tang ◽  
Jinfang Zhang

The title coordination polymer, poly[bis[μ3-4-(3,2′:6′,3′′-terpyridin-4′-yl)benzoato]cadmium(II)], [Cd(C22H14N3O2)2] n or [Cd(3-cptpy)2] n , (I), has been synthesized solvothermally and characterized by IR spectroscopy, thermogravimetric analysis, and single-crystal and powder X-ray diffraction. The structure is composed of 3-cptpy− ligands bridging Cd atoms, with each Cd atom coordinated by six ligands and each ligand coordinating to three Cd atoms. Each Cd atom is in a slightly distorted trans-N2O4 octahedral environment, forming a two-dimensional layer structure with a (3,6)-connected topology. Layers are linked to each other by π–π stacking, resulting in a three-dimensional supramolecular framework. The strong luminescence and good thermal stability of (I) indicate that it can potentially be used as a luminescence sensor. The compound also shows a highly selective and sensitive response to 2,4,6-trinitrophenol through the luminescence quenching effect.


Sign in / Sign up

Export Citation Format

Share Document