scholarly journals Structural basis for DNA recognition by the transcription regulator MetR

Author(s):  
Avinash S. Punekar ◽  
Jonathan Porter ◽  
Stephen B. Carr ◽  
Simon E. V. Phillips

MetR, a LysR-type transcriptional regulator (LTTR), has been extensively studied owing to its role in the control of methionine biosynthesis in proteobacteria. A MetR homodimer binds to a 24-base-pair operator region of themetgenes and specifically recognizes the interrupted palindromic sequence 5′-TGAA-N5-TTCA-3′. Mechanistic details underlying the interaction of MetR with its target DNA at the molecular level remain unknown. In this work, the crystal structure of the DNA-binding domain (DBD) of MetR was determined at 2.16 Å resolution. MetR-DBD adopts a winged-helix–turn–helix (wHTH) motif and shares significant fold similarity with the DBD of the LTTR protein BenM. Furthermore, a data-driven macromolecular-docking strategy was used to model the structure of MetR-DBD bound to DNA, which revealed that a bent conformation of DNA is required for the recognition helix α3 and the wing loop of the wHTH motif to interact with the major and minor grooves, respectively. Comparison of the MetR-DBD–DNA complex with the crystal structures of other LTTR-DBD–DNA complexes revealed residues that may confer operator-sequence binding specificity for MetR. Taken together, the results show that MetR-DBD uses a combination of direct base-specific interactions and indirect shape recognition of the promoter to regulate the transcription ofmetgenes.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiang Feng ◽  
Yasunori Noguchi ◽  
Marta Barbon ◽  
Bruce Stillman ◽  
Christian Speck ◽  
...  

AbstractThe Origin Recognition Complex (ORC) binds to sites in chromosomes to specify the location of origins of DNA replication. The S. cerevisiae ORC binds to specific DNA sequences throughout the cell cycle but becomes active only when it binds to the replication initiator Cdc6. It has been unclear at the molecular level how Cdc6 activates ORC, converting it to an active recruiter of the Mcm2-7 hexamer, the core of the replicative helicase. Here we report the cryo-EM structure at 3.3 Å resolution of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA. The structure reveals that Cdc6 contributes to origin DNA recognition via its winged helix domain (WHD) and its initiator-specific motif. Cdc6 binding rearranges a short α-helix in the Orc1 AAA+ domain and the Orc2 WHD, leading to the activation of the Cdc6 ATPase and the formation of the three sites for the recruitment of Mcm2-7, none of which are present in ORC alone. The results illuminate the molecular mechanism of a critical biochemical step in the licensing of eukaryotic replication origins.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Huang ◽  
Wei Sun ◽  
Zhi Cheng ◽  
Minxuan Chen ◽  
Xueyan Li ◽  
...  

Abstract To understand how the RuvC catalytic domain of Class 2 Cas proteins cleaves DNA, it will be necessary to elucidate the structures of RuvC-containing Cas complexes in their catalytically competent states. Cas12i2 is a Class 2 type V-I CRISPR-Cas endonuclease that cleaves target dsDNA by an unknown mechanism. Here, we report structures of Cas12i2–crRNA–DNA complexes and a Cas12i2–crRNA complex. We reveal the mechanism of DNA recognition and cleavage by Cas12i2, and activation of the RuvC catalytic pocket induced by a conformational change of the Helical-II domain. The seed region (nucleotides 1–8) is dispensable for RuvC activation, but the duplex of the central spacer (nucleotides 9–15) is required. We captured the catalytic state of Cas12i2, with both metal ions and the ssDNA substrate bound in the RuvC catalytic pocket. Together, our studies provide significant insights into the DNA cleavage mechanism by RuvC-containing Cas proteins.


FEBS Journal ◽  
2019 ◽  
Author(s):  
Meiqin Jiang ◽  
Lifang Sun ◽  
Michail N. Isupov ◽  
Jennifer A. Littlechild ◽  
Xiuling Wu ◽  
...  

Nature ◽  
2014 ◽  
Vol 513 (7519) ◽  
pp. 569-573 ◽  
Author(s):  
Carolin Anders ◽  
Ole Niewoehner ◽  
Alessia Duerst ◽  
Martin Jinek

2014 ◽  
Vol 43 (2) ◽  
pp. 1231-1240 ◽  
Author(s):  
Junfeng Liu ◽  
Jinguang Huang ◽  
Yanxiang Zhao ◽  
Huaian Liu ◽  
Dawei Wang ◽  
...  

2021 ◽  
Author(s):  
Renjian Xiao ◽  
Shukun Wang ◽  
Ruijie Han ◽  
Zhuang Li ◽  
Clinton Gabel ◽  
...  

The type V-K CRISPR-Cas system, featured by Cas12k effector with a naturally inactivated RuvC domain and associated with Tn7-like transposon for RNA-guided DNA transposition, is a promising tool for precise DNA insertion. To reveal the mechanism underlying target DNA recognition, we determined a cryo-EM structure of Cas12k from cyanobacteria Scytonema hofmanni in complex with a single guide RNA (sgRNA) and a double-stranded target DNA. Coupled with mutagenesis and in vitro DNA transposition assay, our results revealed mechanisms for the recognition of the GGTT PAM sequence and the structural elements of Cas12k critical for RNA-guided DNA transposition. These structural and mechanistic insights should aid in the development of type V-K CRISPR-transposon systems as tools for genome editing.


2021 ◽  
Author(s):  
Renjian Xiao ◽  
Shukun Wang ◽  
Ruijie Han ◽  
Zhuang Li ◽  
Clinton Gabel ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shohei Nosaki ◽  
Tohru Terada ◽  
Akira Nakamura ◽  
Kei Hirabayashi ◽  
Yuqun Xu ◽  
...  

AbstractThe maltose-binding protein (MBP) fusion tag is one of the most commonly utilized crystallization chaperones for proteins of interest. Recently, this MBP-mediated crystallization technique was adapted to Arabidopsis thaliana (At) BRZ-INSENSITIVE-LONG (BIL1)/BRASSINAZOLE-RESISTANT (BZR1), a member of the plant-specific BZR TFs, and revealed the first structure of AtBIL1/BZR1 in complex with target DNA. However, it is unclear how the fused MBP affects the structural features of the AtBIL1/BZR1-DNA complex. In the present study, we highlight the potential utility of the MBP crystallization chaperone by comparing it with the crystallization of unfused AtBIL1/BZR1 in complex with DNA. Furthermore, we assessed the validity of the MBP-fused AtBIL1/BZR1-DNA structure by performing detailed dissection of crystal packings and molecular dynamics (MD) simulations with the removal of the MBP chaperone. Our MD simulations define the structural basis underlying the AtBIL1/BZR1-DNA assembly and DNA binding specificity by AtBIL1/BZR1. The methodology employed in this study, the combination of MBP-mediated crystallization and MD simulation, demonstrates promising capabilities in deciphering the protein-DNA recognition code.


Sign in / Sign up

Export Citation Format

Share Document