scholarly journals An in silico structural insights into Plasmodium LytB protein and its inhibition

2014 ◽  
Vol 70 (a1) ◽  
pp. C1791-C1791
Author(s):  
Rajabrata Bhunya ◽  
Suman Nandy ◽  
Alpana Seal

In most of the pathogenic organisms including Plasmodium falciparum, isoprenoids are synthesized via MEP (MethylErythritol 4-Phosphate) pathway. LytB is the last enzyme of this pathway which catalyzes the conversion of (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Since the MEP pathway is not used by humans, it represents an attractive target for the development of new antimalarial compounds or inhibitors. Here a systematic in-silico study has been conducted to get an insight into the structure of Plasmodium lytB as well as its affinities towards different inhibitors. We used comparative modeling technique to predict the three dimensional (3D) structure of Plasmodium LytB taking E. Coli LytB protein (PDB ID: 3KE8) as template and the model was subsequently refined through molecular dynamics (MD) simulation. A large ligand dataset containing diphospate group was subjected for virtual screening against the target using GOLD 5.2 program. Considering the mode of binding and affinities, 17 leads were selected on basis of binding energies in comparison to its substrate HMBPP (Gold.Chemscore.DG: -20.9734 kcal/mol). Among them, 5 were discarded because of their inhibitory activity towards other human enzymes. The rest 12 potential leads carry all the properties of any "drug like" molecule and the knowledge of Plasmodium LytB inhibitory mechanism which can provide valuable support for the antimalarial inhibitor design in future.

2021 ◽  
Vol 45 (10) ◽  
pp. 4756-4765
Author(s):  
Daoxing Chen ◽  
Liting Zhang ◽  
Yanan Liu ◽  
Jiali Song ◽  
Jingwen Guo ◽  
...  

EGFR L792Y/F/H mutation makes it difficult for Osimertinib to recognize ATP pockets.


Biomolecules ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 116 ◽  
Author(s):  
Tarsila Castro ◽  
Florentina-Daniela Munteanu ◽  
Artur Cavaco-Paulo

Tau is a microtubule-associated protein that promotes microtubule assembly and stability. This protein is implicated in several neurodegenerative diseases, including Alzheimer’s. To date, the three-dimensional (3D) structure of tau has not been fully solved, experimentally. Even the most recent information is sometimes controversial in regard to how this protein folds, interacts, and behaves. Predicting the tau structure and its profile sheds light on the knowledge about its properties and biological function, such as the binding to microtubules (MT) and, for instance, the effect on ionic conductivity. Our findings on the tau structure suggest a disordered protein, with discrete portions of well-defined secondary structure, mostly at the microtubule binding region. In addition, the first molecular dynamics simulation of full-length tau along with an MT section was performed, unveiling tau structure when associated with MT and interaction sites. Electrostatics and conductivity were also examined to understand how tau affects the ions in the intracellular fluid environment. Our results bring a new insight into tau and tubulin MT proteins, their characteristics, and the structure–function relationship.


2019 ◽  
Vol 13 ◽  
pp. 117793221986553 ◽  
Author(s):  
Gbolahan O Oduselu ◽  
Olayinka O Ajani ◽  
Yvonne U Ajamma ◽  
Benedikt Brors ◽  
Ezekiel Adebiyi

Plasmodium falciparum adenylosuccinate lyase ( PfADSL) is an important enzyme in purine metabolism. Although several benzimidazole derivatives have been commercially developed into drugs, the template design as inhibitor against PfADSL has not been fully explored. This study aims to model the 3-dimensional (3D) structure of PfADSL, design and predict in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) of 8 substituted benzo[ d]imidazol-1-yl)methyl)benzimidamide compounds as well as predict the potential interaction modes and binding affinities of the designed ligands with the modelled PfADSL. PfADSL 3D structure was modelled using SWISS-MODEL, whereas the compounds were designed using ChemDraw Professional. ADMET predictions were done using OSIRIS Property Explorer and Swiss ADME, whereas molecular docking was done with AutoDock Tools. All designed compounds exhibited good in silico ADMET properties, hence can be considered safe for drug development. Binding energies ranged from −6.85 to −8.75 kcal/mol. Thus, they could be further synthesised and developed into active commercial antimalarial drugs.


Author(s):  
Debraj Koiri ◽  
Ditam Chakraborty ◽  
Pranotosh Das ◽  
Rajkumar Rana ◽  
Soumyanil Chatterjee ◽  
...  

Since December 2019, the worldwide spread of COVID-19 has brought the majority of the world to a standstill, affecting daily lives as well as economy. Under these conditions, it is imperative to develop a cure as soon as possible. On account of some of the adverse side effects of the existing conventional drugs, researchers all around the world are screening natural antiviral phytochemicals as potential therapeutic agents against COVID-19. This paper aims to review interactions of some specific phytochemicals with the receptor binding domain (RBD) of the Spike glycoprotein of SARS-CoV-2 and suggest their possible therapeutic applications. Literature search was done based on the wide array of in-silico studies conducted using broad spectrum phytochemicals against SARS-CoV-2 and other viruses. We shortlisted 26 such phytochemicals specifically targeting the S protein and its interactions with host receptors. To validate the previously published results, we also conducted molecular docking using the AutoDockVina application and identified 6 high potential phytochemicals for therapeutic use based on their binding energies. Besides this, availability of these compounds, their mode of action, toxicity data and cost-effectiveness were also taken into consideration. Our review specifically identifies 6 phytochemicals that can be used as potential treatments for COVID-19 based on their availability, toxicology results and low costs of production. However, all these compounds need to be further validated by wet lab experiments and should be approved for clinical use only after appropriate trials.


Author(s):  
DESSY AGUSTINI ◽  
LEO VERNADESLY ◽  
DELVIANA ◽  
THEODORUS

Objectives: This research aims to determine the efficacy of compounds in robusta coffee against colorectal cancer through the inhibition of the T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) receptor. Methods: This in silico study has been conducted in computing platform from June to August 2021. The selected test compounds would go through the Lipinski rule screening through the SwissADME website and the compounds that met these regulations would be docked to the TIGIT protein using AutoDock Tools and AutoDock Vina. The interactions with the highest binding energies were visualized using BIOVIA Discovery Studio 2020. The test compounds then underwent a toxicity profile analysis on the admetSAR 2.0 website. Results: All test compounds complied with the Lipinski rule. The molecular docking results showed the highest binding energy in kahweol and cafestol (−8.1 kcal/mol) compared to OMC (−7.9 kcal/mol), chlorogenic acid (−7.8 kcal/mol), caffeic acid (−6.3 kcal/mol), caffeine (−6.1 kcal/mol), trigonelline (−5.3 kcal/mol), HMF (−5.1 kcal/mol), furfuryl alcohol (−4.4 kcal/mol), and 5-fluorouracil as the comparator drug (−5.3 kcal/mol). Kahweol, cafestol, and 5-fluorouracil revealed the hydrophobic interactions and hydrogen bonds with amino acid residues in TIGIT. Kahweol and cafestol unveiled minimal toxicity prediction Conclusion: Kahweol and cafestol demonstrated the best results in inhibiting the TIGIT protein which played a role in colorectal cancer. In vitro and in vivo studies are needed to strengthen the findings of this research.


Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 221 ◽  
Author(s):  
András Benedek ◽  
Fanni Temesváry-Kis ◽  
Tamjidmaa Khatanbaatar ◽  
Ibolya Leveles ◽  
Éva Viola Surányi ◽  
...  

Protein inhibitors of key DNA repair enzymes play an important role in deciphering physiological pathways responsible for genome integrity, and may also be exploited in biomedical research. The staphylococcal repressor StlSaPIbov1 protein was described to be an efficient inhibitor of dUTPase homologues showing a certain degree of species-specificity. In order to provide insight into the inhibition mechanism, in the present study we investigated the interaction of StlSaPIbov1 and Escherichia coli dUTPase. Although we observed a strong interaction of these proteins, unexpectedly the E. coli dUTPase was not inhibited. Seeking a structural explanation for this phenomenon, we identified a key amino acid position where specific mutations sensitized E. coli dUTPase to StlSaPIbov1 inhibition. We solved the three-dimensional (3D) crystal structure of such a mutant in complex with the substrate analogue dUPNPP and surprisingly found that the C-terminal arm of the enzyme, containing the P-loop-like motif was ordered in the structure. This segment was never localized before in any other E. coli dUTPase crystal structures. The 3D structure in agreement with solution phase experiments suggested that ordering of the flexible C-terminal segment upon substrate binding is a major factor in defining the sensitivity of E. coli dUTPase for StlSaPIbov1 inhibition.


Toxicology ◽  
2011 ◽  
Vol 283 (2-3) ◽  
pp. 96-100 ◽  
Author(s):  
Chao Ma ◽  
Hong Kang ◽  
Qi Liu ◽  
Ruixin Zhu ◽  
Zhiwei Cao

Sign in / Sign up

Export Citation Format

Share Document