scholarly journals Structure of (E)-N-((5-Nitrothiophen-2-YL)Methylene)-3-(Trifluoromethyl)Aniline

2014 ◽  
Vol 70 (a1) ◽  
pp. C997-C997
Author(s):  
Özlem Deveci ◽  
Sümeyye Gümüş ◽  
Erbil Agˇar

The Schiff base compound, C12H7N2O2F3S, has been synthesized and characterized by IR, UV-Vis, 1H-NMR, 13C-NMR and single-crystal X-ray diffraction (XRD) and elemental analysis. The compound, an Ortep-3 [1] view of which is shown in Fig. 1, crystallizes in the monoclinic space group P-1 with a= 7.5700(11) Å, b= 12.8280(16) Å, c= 13.0170(16) Å, α= 89.295(10)o, β= 88.691(11)o, γ= 82.246(11)o and Z=4 in the unit cell. The molecular structure is stabilized by C-H...O and C-H...F intramolecular hydrogen bonds and molecules are linked through intermolecular C-H...O and C-H...F type hydrogen bonds and C-H...Cg (π-ring) interaction. The molecular geometry from X-ray determination of the title compound in the ground state has been compared using the Hartre-Fock (HF) and density functional theory (DFT/B3LYP) [2] with 6-31G(d) [3] basis set. The results of the optimized molecular structure are exhibited and compared with the experimental X-ray diffraction. To determine conformational flexibility, molecular energy profile of the title compound was obtained by B3LYP with the 6-31G(d) basis set calculations with respect to selected degree of torsional freedom, which was varied from –1800to +1800in steps of 100. In addition, molecular electrostatic potential (MEP) distribution and frontier molecular orbitals (FMOs) properties of the title molecule were investigated by theoretical calculations at the B3LYP/6-31G (d) level. Figure 1. Ortep 3 diagram of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Author(s):  
Qingmei Wu ◽  
Wenjun Ye ◽  
Qian Guo ◽  
Tianhui Liao ◽  
Weike Liao ◽  
...  

In current work, we have firstly synthesized 4-(2-chlorobenzyl)-1-(4-hydroxy-3- ((4-hydroxypiperidin-1-yl)methyl)-5-methoxyphenyl)-[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-one (1) by ring-opening, cyclization, substitution, doamine condensation and Mannich reactions. The structural properties of the title compound 1 were explored using spectroscopy (1H NMR, 13C NMR, MS and FT-IR) and X-ray crystallography method. The single-crystal structure confirmed by X-ray diffraction was consistent with the molecular structure optimized by density functional theory (DFT) calculation at B3LYP/6-311G (2d, p) level of theory. The geometrical parameters, molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) analysis were performed by DFT using the B3LYP/6-311G (2d, p) method. Molecular docking has shown favorable interaction between the title compound 1 and SHP2 protein. The inhibitory activity of target compound 1 on SHP2 protein at 10 μM is better than the reference compound (SHP244).


(E)-4-bromo-5-methoxy-2-((o-tolylimino)methyl)phenol was investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. All theoretical calculations were performed by density functional theory (DFT) method by using B3LYP/6-31G(d,p) basis set. The titled compound showed the preference of enol form, as supported by X-ray diffraction method. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms for title compound. Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital (NBO) analysis. Mulliken population method and natural population analysis (NPA) have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods (NPA). Molecular electrostatic potential (MEP) and non linear optical (NLO) properties are also examined.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Hakan Bülbül ◽  
Yavuz Köysal ◽  
Necmi Dege ◽  
Sümeyye Gümüş ◽  
Erbil Ağar

The compound N-(1,3-dioxoisoindolin-2yl)benzamide, C15H10N2O3, was prepared by the heating of an ethanolic solution of 2-hydroxy-1H-isoindole-1,3(2H)-dione and 4-chloroaniline. The product was characterised using a combination of IR spectroscopy, SEM, and single crystal X-ray diffraction techniques. In addition to the experimental analysis, theoretical calculations were used to investigate the crystal structure in order to compare experimental and theoretical values. The X-ray diffraction analysis shows that the compound crystallises in the monoclinic space group P21/c with the geometric parameters of a=13.5324(11) Å, b=9.8982(8) Å, c=9.7080(8) Å, and β=95.425(6)°. The crystal structure is held together by a network of N-H⋯O hydrogen bonds involving the carboxamide group.


2016 ◽  
Vol 35 (2) ◽  
pp. 169
Author(s):  
Ufuk Çoruh ◽  
Reşat Ustabaş ◽  
Hakkı Türker Akçay ◽  
Emra Menteşe ◽  
Ezequiel M. Vazquez Lopez

In this study, 4-[(4-methyl-5-phenyl-4<em>H</em>-1,2,4-triazol-3-yl)sulfanyl]benzene-1,2-dicarbonitrile was synthesized and its molecular structure was characterized by means of FT-IR and X-ray diffraction methods. The crystal is monoclinic and belongs to the P21/n space group. There are three weak intermolecular C-H…N type hydrogen bonds in the molecular structure. The geometrical parameters, vibration frequencies, HOMO–LUMO energies, and molecular electrostatic potential (MEP) map of the compound (3) in ground state were calculated by using density functional theory (DFT/B3LYP) with the 6-311G(d) basis set. Calculated geometrical parameters were compared with X-ray diffraction geometric parameters. On the other hand, theoretical and experimental FT-IR results were also compared.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Aamer Saeed ◽  
Ifzan Arshad ◽  
Ulrich Flörke

A new hydrazide derivativeN′-(2,4-dinitrophenyl)-2-fluorobenzohydrazide was synthesized and characterized by NMR and IR spectroscopy. The molecular structure was also studied by X-ray diffraction, and the results of the optimized molecular structure are presented and compared with density functional methods with 631-G basis set. The calculated results show that the optimized geometry can well reproduce the crystal structural parameters, for example, bond lengths and angles show good agreement with the experimental data.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jian-Chang Jin ◽  
Zhao-Hui Sun ◽  
Ming-Yan Yang ◽  
Jing Wu ◽  
Xing-Hai Liu

The title compound (C18H13ClF3N3O) were synthesized and recrystallized from CH3OH. The compound was characterized byH1NMR, MS, HRMS, and X-ray diffraction. The compound crystallized in the monoclinic space groupP2(1)/nwitha=8.2354(14),b=12.686(2),c=16.633(3) Å,α=90,β=97.951(3),γ=90∘,V=1721.0(5)  Å3,Z=4,andR=0.0376for 1933 observed reflections withI>2σ(I).X-ray analysis reveals that intermolecular N–H⋯N interactions exist in the adjacent molecules. Theoretical calculation of the title compound was carried out with HF/6-31G(d,p), B3LYP/6-31G(d,p). The full geometry optimization was carried out using 6-31G(d,p)basis set and the frontier orbital energy. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP) showed the best agreement with the experimental data.


1978 ◽  
Vol 33 (7) ◽  
pp. 753-755 ◽  
Author(s):  
G. Struckmeier ◽  
J. Engel ◽  
U. Thewalt

Abstract The crystal and molecular structure of the title compound has been determined by X-ray diffraction. The compound possesses an (almost) planar Z configuration. The ions form ion pairs in the solid state: each bromide anion is connected via two hydrogen bonds with a cation. The crystal data are: space group P21/n with Z = 4; cell dimensions a = 14.097(2), b = 11.591(2), c = 14.133(3) Å, β = 106,22(2)°.


2021 ◽  
Vol 12 (4) ◽  
pp. 459-468
Author(s):  
Shilpa Mallappa Somagond ◽  
Ahmedraza Mavazzan ◽  
Suresh Fakkirappa Madar ◽  
Madivalagouda Sannaikar ◽  
Shankar Madan Kumar ◽  
...  

This study is composed of X-ray diffraction and Density Functional Theory (DFT) based molecular structural analyses of 2-phenyl-4-(prop-2-yn-1-yl)-2,4-dihydro-3H-1,2,4-triazol-3-one (2PPT). Crystal data for C11H9N3O: Monoclinic, space group P21/c (no. 14), a = 7.8975(2) Å, b = 11.6546(4) Å, c = 11.0648(3) Å, β = 105.212(2)°, V = 982.74(5) Å3, Z = 4, T = 296.15 K, μ(MoKα) = 0.091 mm-1, Dcalc = 1.346 g/cm3, 13460 reflections measured (5.174° ≤ 2Θ ≤ 64.72°), 3477 unique (Rint = 0.0314, Rsigma = 0.0298) which were used in all calculations. The final R1 was 0.0470 (I > 2σ(I)) and wR2 was 0.1368 (all data). The experimentally determined data was supported by theoretically optimized calculations processed with the help of Hartree-Fock (HF) technique and Density Functional Theory with the 6-311G(d,p) basis set in the ground state. Geometrical parameters (Bond lengths and angles) as well as spectroscopic (FT-IR, 1H NMR, and 13C NMR) properties of 2PPT molecule has been optimized theoretically and compared with the experimentally obtained results. Hirshfeld surface analysis with 2D fingerprinting plots was used to figure out the possible and most significant intermolecular interactions. The electronic characterizations such as molecular electrostatic potential map (MEP) and Frontier molecular orbital (FMO) energies have been studied by DFT/B3LYP approach. The MEP imparted the detailed information regarding electronegative and electropositive regions across the molecule. The HOMO-LUMO energy gap as high as 5.3601 eV was found to be responsible for the high kinetic stability of the 2PPT.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1234-C1234
Author(s):  
Manel Boulakoud ◽  
Abdelkader Chouaih ◽  
Fodil Hamzaoui

We report here the synthesis of Z-3-(2-Ethoxyphenyl)-2-(2-Ethoxyphenyl)-1,3-Thiazolidin-4-one compound. The crystal structure has been determined by X-ray diffraction. The compound crystallizes in the monoclinic system with space group P21/n and cell parameters: a = 9.4094(10), b = 9.3066(10), c = 20.960(2) Å, β=99.0375(10)0, V = 1812.7(3)Å3 and Z = 4. The structure has been refined to a final R = 0.05 for 2083 observed reflections. The refined structure was found to be significantly non planar. The molecule exhibits intermolecular hydrogen bond of type C–H...O, C–H...N and C–H...S. Ab initio calculations were also performed at Hartree–Fock and density functional theory levels. The full HF and DFT geometry optimization was carried out using 6-31G(d,p) basis set. The observed molecular structure is compared with that calculated by both HF and density functional theory methods. The optimized geometry of the title compound was found to be consistent structure determined by X-ray diffraction.


Author(s):  
Hanife Saraçoğlu ◽  
Onur Erman Doğan ◽  
Tuğgan Ağar ◽  
Necmi Dege ◽  
Turganbay S. Iskenderov

In the crystal structure of the title compound, C14H12ClNO, the molecules are linked through C—H...O hydrogen bonds and C—H...π interactions, forming chains parallel to the [010] direction. π–π interactions and intramolecular hydrogen bonds are also observed. The molecular geometry of the title compound in the ground state has been calculated using density functional theory at the B3LYP level with the 6–311++G(2d,2p) basis set. Additionally, frontier molecular orbital and molecular electrostatic potential map analyses were performed.


Sign in / Sign up

Export Citation Format

Share Document