X-ray and DFT Investigation of (E)-4-bromo-5-methoxy-2-((o-tolylimino)methyl)phenol Compound

(E)-4-bromo-5-methoxy-2-((o-tolylimino)methyl)phenol was investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. All theoretical calculations were performed by density functional theory (DFT) method by using B3LYP/6-31G(d,p) basis set. The titled compound showed the preference of enol form, as supported by X-ray diffraction method. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms for title compound. Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital (NBO) analysis. Mulliken population method and natural population analysis (NPA) have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods (NPA). Molecular electrostatic potential (MEP) and non linear optical (NLO) properties are also examined.

2014 ◽  
Vol 70 (a1) ◽  
pp. C997-C997
Author(s):  
Özlem Deveci ◽  
Sümeyye Gümüş ◽  
Erbil Agˇar

The Schiff base compound, C12H7N2O2F3S, has been synthesized and characterized by IR, UV-Vis, 1H-NMR, 13C-NMR and single-crystal X-ray diffraction (XRD) and elemental analysis. The compound, an Ortep-3 [1] view of which is shown in Fig. 1, crystallizes in the monoclinic space group P-1 with a= 7.5700(11) Å, b= 12.8280(16) Å, c= 13.0170(16) Å, α= 89.295(10)o, β= 88.691(11)o, γ= 82.246(11)o and Z=4 in the unit cell. The molecular structure is stabilized by C-H...O and C-H...F intramolecular hydrogen bonds and molecules are linked through intermolecular C-H...O and C-H...F type hydrogen bonds and C-H...Cg (π-ring) interaction. The molecular geometry from X-ray determination of the title compound in the ground state has been compared using the Hartre-Fock (HF) and density functional theory (DFT/B3LYP) [2] with 6-31G(d) [3] basis set. The results of the optimized molecular structure are exhibited and compared with the experimental X-ray diffraction. To determine conformational flexibility, molecular energy profile of the title compound was obtained by B3LYP with the 6-31G(d) basis set calculations with respect to selected degree of torsional freedom, which was varied from –1800to +1800in steps of 100. In addition, molecular electrostatic potential (MEP) distribution and frontier molecular orbitals (FMOs) properties of the title molecule were investigated by theoretical calculations at the B3LYP/6-31G (d) level. Figure 1. Ortep 3 diagram of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.


2017 ◽  
Vol 23 (2) ◽  
pp. 115-123
Author(s):  
Elif Çelenk Kaya ◽  
Afşin Ahmet Kaya ◽  
Zeynep Demircioğlu ◽  
Orhan Büyükgüngör

AbstractA single crystal of Ni(II)bis(3,4 dimethoxybenzoate)bis(nicotinamide) dihydrate, formulated as C30H34N4NiO12 (I), was characterized in the solid state by infra-red (IR), ultra-violet (UV) and single crystal X-ray diffraction analysis at 296 K as mononuclear with a distorted octahedral stereochemistry. The complex consists of a six-coordinate Nickel atom in a distorted octahedral environment constructed from two N atoms and four O atoms and crystallizes in the monoclinic space group C 2/c with a=27.7680(16) Å, b=8.5748(3) Å, c=17.8018(9) Å, α=90°, β=108.154(4)°, γ=90°, Z=4. The molecular structure and geometry was also optimized using the B3LYP density functional theory method employing the 6-31G(d) basis set. The molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, nonlinear optical properties (NLO) and natural bond analysis (NBO), Mulliken population analyis, natural population analysis (NPA) and Fukui function analysis were also described.


2009 ◽  
Vol 65 (5) ◽  
pp. 639-646 ◽  
Author(s):  
Edward E. Ávila ◽  
Asiloé J. Mora ◽  
Gerzon E. Delgado ◽  
Ricardo R. Contreras ◽  
Luis Rincón ◽  
...  

The molecular and crystalline structure of ethyl 1′,2′,3′,4′,4a′,5′,6′,7′-octahydrodispiro[cyclohexane-1,2′-quinazoline-4′,1′′-cyclohexane]-8′-carbodithioate (I) was solved and refined from powder synchrotron X-ray diffraction data. The initial model for the structural solution in direct space using the simulated annealing algorithm implemented in DASH [David et al. (2006). J. Appl. Cryst. 39, 910–915] was obtained performing a conformational study on the fused six-membered rings of the octahydroquinazoline system and the two spiran cyclohexane rings of (I). The best model was chosen using experimental evidence from 1H and 13C NMR [Contreras et al. (2001). J. Heterocycl. Chem. 38, 1223–1225] in combination with semi-empirical AM1 calculations. In the refined structure the two spiran rings have the chair conformation, while both of the fused rings in the octahydroquinazoline system have half-chair conformations compared with in-vacuum density-functional theory (DFT) B3LYP/6-311G*, DFTB (density-functional tight-binding) theoretical calculations in the solid state and other related structures from X-ray diffraction data. Compound (I) presents weak intramolecular hydrogen bonds of the type N—H...S and C—H...S, which produce delocalization of the electron density in the generated rings described by graph symbols S(6) and S(5). Packing of the molecules is dominated by van der Waals interactions.


2020 ◽  
Vol 32 (5) ◽  
pp. 1015-1025
Author(s):  
N. Shet ◽  
R. Nazareth ◽  
P. Krishna Murthy ◽  
P.A. Suchetan

The corrosion inhibition competence of 4-{[4-(dimethylamino)benzylidene]amino}-5-methyl-4H-1,2,4-triazole-3-thiol (DBTT) on 316 stainless steel (316 SS) in 2.5 M H2SO4 was studied using various electrochemical as well as weight-loss measurements. The alloy surface was examined by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Concentration effect on inhibition efficiency was investigated by varying concentration from 5 to 2000 ppm in the temperature range 30-60 °C. Results indicated mixed-type inhibitory action of DBTT. The efficiency increased with the raise in concentration of DBTT and temperature, reaching a highest of 92.4 % at 60 °C. Langmuir adsorption isotherm is obeyed. Calculation of different thermodynamic factors suggests that the adsorption is via both physisorption and chemisorption. In addition to these, several global reactivity parameters were calculated using DFT method at B3LYP/6-311++(d,p) basis set. Theoretical calculations are in good concurrence with the experimental results.


2019 ◽  
Vol 9 (7) ◽  
pp. 778-785 ◽  
Author(s):  
Ben-Chao Zhu ◽  
Zhang Yu ◽  
Wang Ping ◽  
Lu Zeng ◽  
Shuai Zhang

By using Density Functional Theory (DFT) method at the B3LYP/6-311G level, the structures, stabilities, and electronic properties of cationic Be2Mg+ n (n = 1–11) clusters have been systematically studied. The optimized geometry show that the ground state structures of cationic Be2Mg+ n (n = 1–11) clusters favor 3D structures except n = 1, 2. Furthermore, the average binding energy E b, the second-order energy differences Δ2E, the fragmentation energy Ef and the HOMO-LUMO energy Egap of the ground state of cationic Be2Mg– n (n = 1–11) clusters are calculated, the final results indicate that Be2Mg+6 and Be2Mg+9 clusters have a higher stability than other clusters. Additionally, the NCP, NEC and Mulliken population analysis reveal that the charges in cationic Be2Mg+ n (n = 1–11) clusters transfer from Mg atom to Be atoms, and strong sp hybridizations are presented in Be atoms of Be2Mg+ n clusters. Finally, the polarizability analysis indicates that the nuclei and electronic clouds of clusters are affected by external field with the increase of cluster size.


2017 ◽  
Vol 95 (5) ◽  
pp. 580-589 ◽  
Author(s):  
N. Kalaiarasi ◽  
S. Manivarman

Vibrational and spectral characterizations of 2-(6-oxo-2-thioxo tetrahydro pyrimidin-4(1h)-ylidene) hydrazine carboxamide (OTHHPYHC) were experimentally presented for the ground state using FTIR and FT-Raman and theoretically presented by density functional theory (DFT) using B3LYP correlation function with the basis set 6-31G(d,p). The geometrical parameters, energies, and wavenumbers have been obtained. The fundamental assignments were performed on the basis of total energy distribution. The first order hyperpolarizability (β0) and relative properties (β, α0, and Δα) were calculated using B3LYP/6-31G(d, p) method. Solidity of the molecule due to hyperconjugative interactions and charge delocalization has been analysed using natural bond orbital (NBO) analysis. The charge distribution and electron transfer from bonding to antibonding orbitals and electron density in the σ* and π* antibonding orbitals confirms interaction within the molecule. In addition to this, Mulliken population and HOMO–LUMO analysis have been used to support the information of structural properties.


2014 ◽  
Vol 68 (5) ◽  
Author(s):  
Sławomir Michalik ◽  
Jan Małecki ◽  
Natalia Młynarczyk

AbstractA combined experimental and computational study of the dinuclear rhenium(V) complex containing (ReO)2(µ-O) core is presented in this article. The solid-state [Re2Cl4(O)2(µ-O)(3,5-lut)4] (3,5-lut = 3,5-dimethylpyridine) complex was characterised structurally (by single crystal X-ray diffraction) and spectroscopically (by IR, NMR, UV-VIS). The electronic structure was examined using the density functional theory (DFT) method. The spin-allowed electronic transitions were calculated using the time-dependent DFT method, and the UV-VIS spectrum was discussed.


2014 ◽  
Vol 70 (a1) ◽  
pp. C996-C996
Author(s):  
Abdelkader Chouaih ◽  
Salem Yahiaoui ◽  
Nadia Benhalima ◽  
Manel Boulakoud ◽  
Rachida Rahmani ◽  
...  

The electronic and structural properties of thiazolic ring derivatives were studied using density functional theory (DFT) and X-ray diffraction in terms of their application as organic semiconductor materials in photovoltaic devices. The B3LYP hybrid functional in combination with Pople type 6-31G(d) basis set with a polarization function was used in order to determine the optimized geometries and the electronic properties of the ground state, while transition energies and excited state properties were obtained from DFT with B3LYP/6-31G(d) calculation. The investigation of thiazolic derivatives formed by the arrangement of several monomeric units revealed that three-dimensional (3D) conjugated architectures present the best geometric and electronic characteristics for use as an organic semiconductor material. The highest occupied molecular orbital (HOMO) . lowest unoccupied molecular orbital (LUMO) energy gap was decreased in 3D structures that extend the absorption spectrum toward longer wavelengths, revealing a feasible intramolecular charge transfer process in these systems. All calculations in this work were performed using the Gaussian 03 W software package.


2021 ◽  
Author(s):  
Yathreb Oueslati ◽  
Sevgi Kansız ◽  
Necmi Dege ◽  
Cristina de la Torre Paredes ◽  
Antoni Llopis Lorente ◽  
...  

Abstract A novel interesting organic-inorganic hybrid compound, named (1-phenylpiperazinium) trihydrogen triphosphate, with the formula (C10H15N2)2H3P3O10 has been obtained by low speed of evaporation at room temperature after using the ion exchange chemical procedure. To carry out a detailed crystallographic structure analysis, single-crystal X-ray diffraction has been reported. In the molecular arrangement, the different entities are held together through N-H…O, O-H…O and C-H…O hydrogen bonds, building up a three dimensional packing. Powder X-ray diffraction analysis is acquired to confirm the purity of the product. The nature and the proportion of intermolecular interactions were investigated by Hirshfeld surfaces analysis. In order to support the experimental results, a density functional theory (DFT) calculation were performed, using the Becke-3-Parameter-Lee-Yang-Parr (B3LYP) function with LANL2DZ basis set, and the data indicate the much agreement between the experimental and the theoretical results. Thus, the physicochemical properties were studied employing a variety of techniques (FT-IR, NMR, UV-Visible and photoluminescence). To get an insight of the possible employment of the present material in biology, cell viability assays were performed.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 835 ◽  
Author(s):  
Monique Tillard ◽  
Alexandre Berche ◽  
Philippe Jund

Synthesis of NiTiSn by a mechanical alloying process followed by a high temperature thermal annealing was studied. Experiments were conducted varying parameters like the provided energy, the mechanical alloying reaction time, as well as the annealing temperature and duration. Based on the careful investigation of the phases present in the samples by systematic X-ray diffraction (after mechanical alloying and after annealing) and selected microscopy analyses, a reaction mechanism is proposed supported by theoretical calculations at the DFT (Density Functional Theory) level. An energy window to prepare directly NiTiSn has been evidenced. Highly pure NiTiSn has also been obtained by conversion from a multicomponent precursor obtained by low energy mechanical alloying.


Sign in / Sign up

Export Citation Format

Share Document