scholarly journals CO2 adsorption in Y zeolite: a structural and dynamic view by a novel principal-component-analysis-assisted in situ single-crystal X-ray diffraction experiment

2019 ◽  
Vol 75 (2) ◽  
pp. 214-222 ◽  
Author(s):  
Eleonora Conterosito ◽  
Luca Palin ◽  
Rocco Caliandro ◽  
Wouter van Beek ◽  
Dmitry Chernyshov ◽  
...  

The increasing efficiency of detectors and brightness of X-rays in both laboratory and large-scale facilities allow the collection of full single-crystal X-ray data sets within minutes. The analysis of these `crystallographic big data' requires new tools and approaches. To answer these needs, the use of principal component analysis (PCA) is proposed to improve the efficiency and speed of the analysis. Potentialities and limitations of PCA were investigated using single-crystal X-ray diffraction (XRD) data collected in situ on Y zeolite, in which CO2, acting as an active species, is thermally adsorbed while cooling from 300 to 200 K. For the first time, thanks to the high sensitivity of single-crystal XRD, it was possible to determine the sites where CO2 is adsorbed, the increase in their occupancy while the temperature is decreased, and the correlated motion of active species, i.e. CO2, H2O and Na+. PCA allowed identification and elimination of problematic data sets, and better understanding of the trends of the occupancies of CO2, Na+ and water. The quality of the data allowed for the first time calculation of the enthalpy (ΔH) and entropy (ΔS) of the CO2 adsorption by applying the van 't Hoff equation to in situ single-crystal data. The calculation of thermodynamic values was carried out by both traditional and PCA-based approaches, producing comparable results. The obtained ΔH value is significant and involves systems (CO2 and Y zeolite) with no toxicity, superb stability and chemical inertness. Such features, coupled with the absence of carbonate formation and framework inertness upon adsorption, were demonstrated for the bulk crystal by the single-crystal experiment, and suggest that the phenomenon can be easily reversed for a large number of cycles, with CO2 released on demand. The main advantages of PCA-assisted analysis reside in its speed and in the possibility of it being applied directly to raw data, possibly as an `online' data-quality test during data collection, without any a priori knowledge of the crystal structure.

2014 ◽  
Vol 70 (a1) ◽  
pp. C1138-C1138
Author(s):  
Chiaki Tsuboi ◽  
Kazuki Aburaya ◽  
Shingo Higuchi ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.


2021 ◽  
Author(s):  
Malte Sellin ◽  
Susanne Margot Rupf ◽  
Ulrich Abram ◽  
Moritz Malischewski

Homoleptic eight-fold coordinated methylisocyanide complexes of W(IV) and W(V) have been prepared for the first time. The reaction of [NBu4]4[W(CN)8] with methyl triflate MeOTf gives [W(CNMe)8][OTf]4. The even stronger methylating mixture of methyl fluoride MeF and arsenic pentafluoride AsF5 in liquid sulfur dioxide SO2 is able to fully alkylate both [NBu4]4[W(CN)8] and [NBu4]3[W(CN)8]. The paramagnetic octakis(methylisocyanide)- tungsten(V) [W(CNMe)8][AsF6]5 is thermally highly unstable above −30 °C. All compounds have been characterized via single-crystal X-ray diffraction, IR and Raman, as well as NMR or EPR spectroscopy<br>


2002 ◽  
Vol 57 (6) ◽  
pp. 621-624 ◽  
Author(s):  
Wolfgang Fraenk ◽  
Heinrich Nöth ◽  
Thomas M. Klapötke ◽  
Max Suter

AbstractTetraphenylphosphonium tetraazidoborate, [P(C6H5)4][B(N3)4], was obtained from B(N3)3 - in situ prepared from BH3 · O(C2H5)2 and HN3 - and [P(C6H5)4][N3]. Recrystallization from an acetonitrile / hexane mixture yielded colorless crystals in 60% yield. The molecular structurewas determined by single crystal X-ray diffraction and the [B(N3)4]- anionwas shown to possess S4 symmetry.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Wei Meng ◽  
Lin Du ◽  
Lin Sun ◽  
Lian Zhou ◽  
Xiaopeng Xuan ◽  
...  

One organic functional group was introduced to distinguish the four phenyl ring of tetraphenylethylene, and the In situ temperature-dependent crystal structures were determined to exhibit the conformation changes of tert-butyl...


Sign in / Sign up

Export Citation Format

Share Document