scholarly journals 3,3-Bis(2-hydroxyethyl)-1-(4-methylbenzoyl)thiourea: crystal structure, Hirshfeld surface analysis and computational study

2019 ◽  
Vol 75 (10) ◽  
pp. 1472-1478 ◽  
Author(s):  
Sang Loon Tan ◽  
Ainnul Hamidah Syahadah Azizan ◽  
Mukesh M. Jotani ◽  
Edward R. T. Tiekink

In the title tri-substituted thiourea derivative, C13H18N2O3S, the thione-S and carbonyl-O atoms lie, to a first approximation, to the same side of the molecule [the S—C—N—C torsion angle is −49.3 (2)°]. The CN2S plane is almost planar (r.m.s. deviation = 0.018 Å) with the hydroxyethyl groups lying to either side of this plane. One hydroxyethyl group is orientated towards the thioamide functionality enabling the formation of an intramolecular N—H...O hydrogen bond leading to an S(7) loop. The dihedral angle [72.12 (9)°] between the planes through the CN2S atoms and the 4-tolyl ring indicates the molecule is twisted. The experimental molecular structure is close to the gas-phase, geometry-optimized structure calculated by DFT methods. In the molecular packing, hydroxyl-O—H...O(hydroxyl) and hydroxyl-O—H...S(thione) hydrogen bonds lead to the formation of a supramolecular layer in the ab plane; no directional interactions are found between layers. The influence of the specified supramolecular interactions is apparent in the calculated Hirshfeld surfaces and these are shown to be attractive in non-covalent interaction plots; the interaction energies point to the important stabilization provided by directional O—H...O hydrogen bonds.

Author(s):  
Sang Loon Tan ◽  
Mukesh M. Jotani ◽  
Edward R. T. Tiekink

In the title compound, C12H15N3O5S, a trisubstituted thiourea derivative, the central CN2S chromophore is almost planar (r.m.s. deviation = 0.018 Å) and the pendant hydroxyethyl groups lie to either side of this plane. While to a first approximation the thione-S and carbonyl-O atoms lie to the same side of the molecule, the S—C—N—C torsion angle of −47.8 (2)° indicates a considerable twist. As one of the hydroxyethyl groups is orientated towards the thioamide residue, an intramolecular N—H...O hydrogen bond is formed which leads to an S(7) loop. A further twist in the molecule is indicated by the dihedral angle of 65.87 (7)° between the planes through the CN2S chromophore and the 4-nitrobenzene ring. There is a close match between the experimental and gas-phase, geometry-optimized (DFT) molecular structures. In the crystal, O—H...O and O—H...S hydrogen bonds give rise to supramolecular layers propagating in the ab plane. The connections between layers to consolidate the three-dimensional architecture are of the type C—H...O, C—H...S and nitro-O...π. The nature of the supramolecular association has been further analysed by a study of the calculated Hirshfeld surfaces, non-covalent interaction plots and computational chemistry, all of which point to the significant influence and energy of stabilization provided by the conventional hydrogen bonds.


2019 ◽  
Vol 75 (12) ◽  
pp. 1919-1924
Author(s):  
Abdelkader Ben Ali ◽  
Youness El Bakri ◽  
Chin-Hung Lai ◽  
Jihad Sebhaoui ◽  
Lhoussaine El Ghayati ◽  
...  

In the title molecule, C13H16N4O3, the mean planes of the phenyl and triazole rings are nearly perpendicular to one another as a result of the intramolecular C—H...O and C—H...π(ring) interactions. In the crystal, layers parallel to (101) are generated by O—H...N, N—H...O and N—H...N hydrogen bonds. The layers are connected by inversion-related pairs of C—H...O hydrogen bonds. The experimental molecular structure is close to the gas-phase geometry-optimized structure calculated by DFT methods. Hirshfeld surface analysis indicates that the most important interaction involving hydrogen in the title compound is the H...H contact. The contribution of the H...O, H...N, and H...H contacts are 13.6, 16.1, and 54.6%, respectively.


2019 ◽  
Vol 60 ◽  
pp. 1-11 ◽  
Author(s):  
R.A. Yossa Kamsi ◽  
G.W. Ejuh ◽  
Y. Tadjouteu Assatse ◽  
C.A. Njeumen ◽  
F. Tchoffo ◽  
...  

2009 ◽  
Vol 08 (04) ◽  
pp. 551-560 ◽  
Author(s):  
EMILIA L. WU ◽  
KELI HAN ◽  
JOHN Z. H. ZHANG

Quantum mechanical calculation and molecular dynamics simulation have been carried out to study binding of Oscillarin (OSC), an antithrombotic marine natural product to human α-thrombin. The binding interaction energies between the inhibitor and individual protein fragments are calculated using a combination of HF and DFT methods. Study shows that the strong binding of OSC to Asp189, Ser214, Trp215, Gly216, and Gly219 is the primary mechanism of drug binding to thrombin. The individual residue–ligand interaction energies provide detailed quantitative information about specific residue interaction with the ligand that should be extremely useful to our understanding of the molecular nature of protein–ligand binding.


Author(s):  
Sang Loon Tan ◽  
Edward R. T. Tiekink

The molecular structure of the title bis-pyridyl substituted diamide hydrate, C14H14N4O2·H2O, features a central C2N2O2 residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methylene groups. The pyridyl rings lie to the same side of the plane, i.e. have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them [87.86 (5)°]. Owing to an anti disposition between the carbonyl-O atoms in the core, two intramolecular amide-N—H...O(carbonyl) hydrogen bonds are formed, each closing an S(5) loop. Supramolecular tapes are formed in the crystal via amide-N—H...O(carbonyl) hydrogen bonds and ten-membered {...HNC2O}2 synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water molecules via water-O—H...N(pyridyl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methylene-C—H...O(water) and methylene-C—H...π(pyridyl) interactions, give rise to a layer parallel to (10\overline{1}); the layers stack without directional interactions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding interactions, and to the significant influence of the water molecule of crystallization upon the molecular packing. The analysis also indicates the contribution of methylene-C—H...O(carbonyl) and pyridyl-C—H...C(carbonyl) contacts to the stability of the inter-layer region. The calculated interaction energies are consistent with importance of significant electrostatic attractions in the crystal.


2021 ◽  
Vol 340 ◽  
pp. 01045
Author(s):  
Pavel Tyapkin ◽  
Denis Rychkov

The energy profiles of various configurations of the tetra-n-butylammonium ion (Bu4N+) arising by changing the angle between a pair of butyl ligands, as well as by rotating of various alkyl fragments in gas phase, were calculated using DFT methods. A hypothesis about the most probable way of changing the conformations of tetra-n-butylammonium ions during the phase transitions in highly conductive solid electrolytes was proposed.


2020 ◽  
Vol 76 (8) ◽  
pp. 1245-1250
Author(s):  
Georgiana Paulus ◽  
Huey Chong Kwong ◽  
Karen A. Crouse ◽  
Edward R. T. Tiekink

The complete molecule of the title hydrazine carbodithioate derivative, C32H30N4O2S4, is generated by a crystallographic twofold axis that bisects the disulfide bond. The molecule is twisted about this bond with the C—S—S—C torsion angle of 90.70 (8)° indicating an orthogonal relationship between the symmetry-related halves of the molecule. The conformation about the imine bond [1.282 (2) Å] is E and there is limited delocalization of π-electron density over the CN2C residue as there is a twist about the N—N bond [C—N—N—C torsion angle = −166.57 (15)°]. An intramolecular hydroxyl-O—H...N(imine) hydrogen bond closes an S(6) loop. In the crystal, methylene-C—H...π(tolyl) contacts assemble molecules into a supramolecular layer propagating in the ab plane: the layers stack without directional interactions between them. The analysis of the calculated Hirshfeld surfaces confirm the importance of H...H contacts, which contribute 46.7% of all contacts followed by H...C/C...H contacts [25.5%] reflecting, in part, the C—H...π(tolyl) contacts. The calculation of the interaction energies confirm the importance of the dispersion term and the influence of the stabilizing H...H contacts in the inter-layer region.


2015 ◽  
Vol 14 (08) ◽  
pp. 1550057 ◽  
Author(s):  
Faranak Dastineh ◽  
Sadegh Salehzadeh ◽  
Mehdi Bayat ◽  
Yazdan Maghsoud

A theoretical study on the selectivity of a series of [M(12C4)][Formula: see text] (M = Li[Formula: see text], Na[Formula: see text], K[Formula: see text], 12C4 = 12-crown-4) complexes for F[Formula: see text], Cl[Formula: see text] and Br[Formula: see text] anions and a number of neutral molecules (CH3CN, CH3OH, NH3, H2O, py, and 12C4) is reported. At first, it was shown that in the gas phase among all studied halide anions and neutral molecules, halides have much more bonding interaction with all [M(12C4)][Formula: see text] cations. Calculated interaction energies of above anions and [M(12C4)][Formula: see text] cations decrease from F[Formula: see text] to Br[Formula: see text]. Also the interaction energy of halide anions with [M(12C4)][Formula: see text] complexes, decreases from [Li(12C4)][Formula: see text] to [K(12C4)][Formula: see text]. The electron decomposition analysis showed that the bond between [M(12C4)][Formula: see text] complexes and both the neutral and anion guests is mainly electrostatic in nature. Then the selectivity of [M(12C4)][Formula: see text] complexes for studied anions and neutral molecules are compared in methanol, acetone, acetonitrile, and nitromethane solutions. It was shown that both the desolvation process of reactants and the strength of host–guest interactions have significant effect on the selectivities. Thus the selectivity of [Li(12C4)][Formula: see text] cation for NH3and H2O neutral molecules in solution, in contrast to the gas phase, is higher than that for bromide anion. The results of calculations showed that all [M(12C4)][Formula: see text] complexes, specially [Li(12C4)][Formula: see text], have high selectivity for F[Formula: see text] over other halide anions and neutral molecules.


Author(s):  
Sang Loon Tan ◽  
Edward R. T. Tiekink

The crystal and molecular structures of the title 1:2 co-crystal, C14H14N4O2·2C7H6O2, are described. The oxalamide molecule has a (+)-antiperiplanar conformation with the 4-pyridyl residues lying to either side of the central, almost planar C2N2O2 chromophore (r.m.s. deviation = 0.0555 Å). The benzoic acid molecules have equivalent, close to planar conformations [C6/CO2 dihedral angle = 6.33 (14) and 3.43 (10)°]. The formation of hydroxy-O—H...N(pyridyl) hydrogen bonds between the benzoic acid molecules and the pyridyl residues of the diamide leads to a three-molecule aggregate. Centrosymmetrically related aggregates assemble into a six-molecule aggregate via amide-N—H...O(amide) hydrogen bonds through a 10-membered {...HNC2O}2 synthon. These are linked into a supramolecular tape via amide-N—H...O(carbonyl) hydrogen bonds and 22-membered {...HOCO...NC4NH}2 synthons. The contacts between tapes to consolidate the three-dimensional architecture are of the type methylene-C—H...O(amide) and pyridyl-C—H...O(carbonyl). These interactions are largely electrostatic in nature. Additional non-covalent contacts are identified from an analysis of the calculated Hirshfeld surfaces.


2018 ◽  
Vol 74 (12) ◽  
pp. 1764-1771 ◽  
Author(s):  
Sang Loon Tan ◽  
Edward R. T. Tiekink

The asymmetric unit of the title co-crystal, 2,2′-thiodibenzoic acid–triphenylphosphane oxide (1/2), C14H10O4S·2C18H15OP, comprises two molecules of 2,2′-thiodibenzoic acid [TDBA; systematic name: 2-[(2-carboxyphenyl)sulfanyl]benzoic acid] and four molecules of triphenylphosphane oxide [TPPO; systematic name: (diphenylphosphoryl)benzene]. The two TDBA molecules are twisted about their disulfide bonds and exhibit dihedral angles of 74.40 (5) and 72.58 (5)° between the planes through the two SC6H4 residues. The carboxylic acid groups are tilted out of the planes of the rings to which they are attached forming a range of CO2/C6 dihedral angles of 19.87 (6)–60.43 (8)°. Minor conformational changes are exhibited in the TPPO molecules with the range of dihedral angles between phenyl rings being −2.1 (1) to −62.8 (1)°. In the molecular packing, each TDBA acid molecule bridges two TPPO molecules via hydroxy-O—H...O(oxide) hydrogen bonds to form two three-molecule aggregates. These are connected into a three-dimensional architecture by TPPO-C—H...O(oxide, carbonyl) and TDBA-C—H...(oxide, carbonyl) interactions. The importance of H...H, O...H/H...O and C...H/H...C contacts to the calculated Hirshfeld surfaces has been demonstrated. In terms of individual molecules, O...H/H...O contacts are more important for the TDBA (ca 28%) than for the TPPO molecules (ca 13%), as expected from the chemical composition of these species. Computational chemistry indicates the four independent hydroxy-O—H...O(oxide) hydrogen bonds in the crystal impart about the same energy (ca 52 kJ mol−1), with DTBA-phenyl-C—H...O(oxide) interactions being next most stabilizing (ca 40 kJ mol−1).


Sign in / Sign up

Export Citation Format

Share Document