Collective analogue computation in smart imaging sensors

Sensor Review ◽  
2001 ◽  
Vol 21 (1) ◽  
pp. 38-44
Author(s):  
Steve Collins
2020 ◽  
pp. 1-1
Author(s):  
Mohammad Reza Mohebbian ◽  
Md Hanif Ali Sohag ◽  
Seyed Shahim Vedaei ◽  
Khan A. Wahid

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sira Mogas-Díez ◽  
Eva Gonzalez-Flo ◽  
Javier Macía

AbstractMuch effort has been expended on building cellular computational devices for different applications. Despite the significant advances, there are still several addressable restraints to achieve the necessary technological transference. These improvements will ease the development of end-user applications working out of the lab. In this study, we propose a methodology for the construction of printable cellular devices, digital or analogue, for different purposes. These printable devices are designed to work in a 2D surface, in which the circuit information is encoded in the concentration of a biological signal, the so-called carrying signal. This signal diffuses through the 2D surface and thereby interacts with different device components. These components are distributed in a specific spatial arrangement and perform the computation by modulating the level of the carrying signal in response to external inputs, determining the final output. For experimental validation, 2D cellular circuits are printed on a paper surface by using a set of cellular inks. As a proof-of-principle, we have printed and analysed both digital and analogue circuits using the same set of cellular inks but with different spatial topologies. The proposed methodology can open the door to a feasible and reliable industrial production of cellular circuits for multiple applications.


2021 ◽  
Vol 13 (7) ◽  
pp. 1261
Author(s):  
Riccardo Roncella ◽  
Nazarena Bruno ◽  
Fabrizio Diotri ◽  
Klaus Thoeni ◽  
Anna Giacomini

Digital surface models (DSM) have become one of the main sources of geometrical information for a broad range of applications. Image-based systems typically rely on passive sensors which can represent a strong limitation in several survey activities (e.g., night-time monitoring, underground survey and night surveillance). However, recent progresses in sensor technology allow very high sensitivity which drastically improves low-light image quality by applying innovative noise reduction techniques. This work focuses on the performances of night-time photogrammetric systems devoted to the monitoring of rock slopes. The study investigates the application of different camera settings and their reliability to produce accurate DSM. A total of 672 stereo-pairs acquired with high-sensitivity cameras (Nikon D800 and D810) at three different testing sites were considered. The dataset includes different camera configurations (ISO speed, shutter speed, aperture and image under-/over-exposure). The use of image quality assessment (IQA) methods to evaluate the quality of the images prior to the 3D reconstruction is investigated. The results show that modern high-sensitivity cameras allow the reconstruction of accurate DSM in an extreme low-light environment and, exploiting the correct camera setup, achieving comparable results to daylight acquisitions. This makes imaging sensors extremely versatile for monitoring applications at generally low costs.


2011 ◽  
Author(s):  
Richard M. Conroy ◽  
Adrian A. Dorrington ◽  
Andrew D. Payne ◽  
Rainer Künnemeyer ◽  
Michael J. Cree

1997 ◽  
Vol 18 (6) ◽  
pp. 1133-1149
Author(s):  
Robert E. Marshall ◽  
David A. de Wolf ◽  
Christos Kontogeorgakis

Sign in / Sign up

Export Citation Format

Share Document