Three‐dimensional discrete element simulation for granular materials

2006 ◽  
Vol 23 (7) ◽  
pp. 749-770 ◽  
Author(s):  
Dawei Zhao ◽  
Erfan G. Nezami ◽  
Youssef M.A. Hashash ◽  
Jamshid Ghaboussi

PurposeDevelop a new three‐dimensional discrete element code (BLOKS3D) for efficient simulation of polyhedral particles of any size. The paper describes efficient algorithms for the most important ingredients of a discrete element code.Design/methodology/approachNew algorithms are presented for contact resolution and detection (including neighbor search and contact detection sections), contact point and force detection, and contact damping. In contact resolution and detection, a new neighbor search algorithm called TLS is described. Each contact is modeled with multiple contact points. A non‐linear force‐displacement relationship is suggested for contact force calculation and a dual‐criterion is employed for contact damping. The performance of the algorithm is compared to those currently available in the literature.FindingsThe algorithms are proven to significantly improve the analysis speed. A series of examples are presented to demonstrate and evaluate the performance of the proposed algorithms and the overall discrete element method (DEM) code.Originality/valueLong computational times required to simulate large numbers of particles have been a major hindering factor in extensive application of DEM in many engineering applications. This paper describes an effort to enhance the available algorithms and further the engineering application of DEM.

2018 ◽  
Vol 35 (6) ◽  
pp. 2327-2348 ◽  
Author(s):  
Beichuan Yan ◽  
Richard Regueiro

Purpose This paper aims to present performance comparison between O(n2) and O(n) neighbor search algorithms, studies their effects for different particle shape complexity and computational granularity (CG) and investigates the influence on superlinear speedup of 3D discrete element method (DEM) for complex-shaped particles. In particular, it aims to answer the question: O(n2) or O(n) neighbor search algorithm, which performs better in parallel 3D DEM computational practice? Design/methodology/approach The O(n2) and O(n) neighbor search algorithms are carefully implemented in the code paraEllip3d, which is executed on the Department of Defense supercomputers across five orders of magnitude of simulation scale (2,500; 12,000; 150,000; 1 million and 10 million particles) to evaluate and compare the performance, using both strong and weak scaling measurements. Findings The more complex the particle shapes (from sphere to ellipsoid to poly-ellipsoid), the smaller the neighbor search fraction (NSF); and the lower is the CG, the smaller is the NSF. In both serial and parallel computing of complex-shaped 3D DEM, the O(n2) algorithm is inefficient at coarse CG; however, it executes faster than O(n) algorithm at fine CGs that are mostly used in computational practice to achieve the best performance. This means that O(n2) algorithm outperforms O(n) in parallel 3D DEM generally. Practical implications Taking for granted that O(n) outperforms O(n2) unconditionally, complex-shaped 3D DEM is a misconception commonly encountered in the computational engineering and science literature. Originality/value The paper clarifies that performance of O(n2) and O(n) neighbor search algorithms for complex-shaped 3D DEM is affected by particle shape complexity and CG. In particular, the O(n2) algorithm outperforms the O(n) algorithm in large-scale parallel 3D DEM simulations generally, even though this outperformance is counterintuitive.


2005 ◽  
Vol 128 (1) ◽  
pp. 116-127 ◽  
Author(s):  
Stephen Wiedmann ◽  
Bob Sturges

Compliant mechanisms for rigid part mating exist for prismatic geometries. A few instances are known of mechanisms to assemble screw threads. A comprehensive solution to this essentially geometric problem comprises at least three parts: parametric equations for nut and bolt contact in the critical starting phase of assembly, the possible space of motions between these parts during this phase, and the design space of compliant devices which accomplish the desired motions in the presence of friction and positional uncertainty. This work concentrates on the second part in which the threaded pair is modeled numerically, and contact tests are automated through software. Tessellated solid models were used during three-dimensional collision analysis to enumerate the approximate location of the initial contact point. The advent of a second contact point presented a more constrained contact state. Thus, the bolt is rotated about a vector defined by the initial two contact points until a third contact location was found. By analyzing the depth of intersection of the bolt into the nut as well as the vertical movement of the origin of the bolt reference frame, we determined that there are three types of contacts states present: unstable two-point, quasi-stable two-point, stable three point. The space of possible motions is bounded by these end conditions which will differ in detail depending upon the starting orientations. We investigated all potential orientations which obtain from a discretization of the roll, pitch, and yaw uncertainties, each of which has its own set of contact points. From this exhaustive examination, a full contact state history was determined, which lays the foundation for the design space of either compliant mechanisms or intelligent sensor-rich controls.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Weibin Lan ◽  
Shouwen Fan ◽  
Shuai Fan

Purpose This paper aims to propose an elementary approach toward the identification of assembly defects of a cam curved groove mechanism. Design/methodology/approach A numerical analysis method for identifying the assembly defects of the cam curved groove mechanism is proposed by resorting to Hertz contact theory. A general mathematical model is established to analyze the kinematic and dynamic characteristics with an interference fit between the main roller and cam curved groove, including the contact points of the external and internal ring. Findings The analysis method of the contact point characteristics of the cam curved groove mechanism is given in this paper, and the kinematic and dynamic characteristics of the main roller can be analyzed. The numerical examples presented in this paper are implemented in MATLAB, feasibility and validity of the above algorithm are verified by the finite element method. Originality/value Regarding the defects of the interference fit, the findings of this paper can serve as a reference for researchers in reducing the defects in the design process of the cam mechanism.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yongliang Wang

Purpose Optimized three-dimensional (3D) fracture networks are crucial for multistage hydrofracturing. To better understand the mechanisms controlling potential disasters as well as to predict them in 3D multistage hydrofracturing, some governing factors, such as fluid injection-induced stratal movement, compression between multiple hydraulic fractures, fracturing fluid flow, fracturing-induced microseismic damaged and contact slip events, must be properly simulated via numerical models. This study aims to analyze the stratal movement and microseismic behaviours induced by multistage propagation of 3D multiple hydraulic fractures. Design/methodology/approach Adaptive finite element–discrete element method was used to overcome the limitations of conventional finite element methods in simulating 3D fracture propagation. This new approach uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of fracture propagation path and computational efficiency. Engineering-scale numerical models were proposed that account for the hydro-mechanical coupling and fracturing fluid leak-off, to simulate multistage propagation of 3D multiple hydraulic fractures, by which the evolution of the displacement, porosity and fracture fields, as well as the fracturing-induced microseismic events were computed. Findings Stratal movement and compression between 3D multiple hydraulic fractures intensify with increasing proximity to the propagating fractures. When the perforation cluster spaces are very narrow, alternate fracturing can improve fracturing effects over those achieved via sequential or simultaneous fracturing. Furthermore, the number and magnitude of microseismic events are directly proportional to the stratal movement and compression induced by multistage propagation of fracturing fracture networks. Originality/value Microseismic events induced by multistage propagation of 3D multiple hydraulic fractures and perforation cluster spaces and fracturing scenarios that impact the deformation and compression among fractures in porous rock matrices are well predicted and analyzed.


Sensor Review ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Jian Li ◽  
Dan Wu ◽  
Yan Han ◽  
Lina Xu

Purpose The purpose of this paper is to extract the angle information of direct P wave within multidimensional vibration signals obtained through the sensor array, and to realize high precision shallow burst point localization based on direct of angle (DOA). Design/methodology/approach This paper presents a method which combines adaptive covariance matrix (ACM) algorithm with geometric constraint conditions for extracting the angle information of direct P wave by using its polarization characteristics. First, modify the obtained three-dimensional vibration data by using attitude rotation matrix and unify the coordinate system of vibration field. Next, construct the beam model of direct P wave by making use of ACM algorithm and extract its angle information. Finally, modify P wave beam model by taking advantage of the space geometric constraint relations between nodes. Findings The results of numerical simulation show that this method not only can extract the angle information of direct P wave arriving at each node effectively, but also can evaluate the quality of extracted angle information of direct P wave. Meanwhile, the results of underground shallow explosion experiment show that this method can extract the angle information of direct P wave of each node significantly and can realize underground shallow explosion source localization based on DOA by using this information, the location error can be limited less than 50 cm and satisfies the location requirements of shallow burst point. Originality/value This paper provides a method for various problems of underground localization based on the sensor array, such as directional demolition blasting, underground damage assessment, earth-penetrating projectile burst point positioning in weaponry industry testing plant, etc., and has definite value to engineering application in underground space positioning field.


Author(s):  
Lindsey L. Reader ◽  
David R. Carrier ◽  
Franz Goller ◽  
Michael R. Isaacs ◽  
Alexis Moore Crisp ◽  
...  

During vertical climbing, the gravitational moment tends to pitch the animal's head away from the climbing surface and this may be countered by 1) applying a correcting torque at a discrete contact point, or 2) applying opposing horizontal forces at separate contact points to produce a free moment. We tested these potential strategies in small parrots with an experimental climbing apparatus imitating the fine branches and vines of their natural habitat. The birds climbed on a vertical ladder with four instrumented rungs that measured three-dimensional force and torque, representing the first measurements of multiple contacts from a climbing bird. The parrots ascend primarily by pulling themselves upward using the beak and feet. They resist the gravitational pitching moment with a free moment produced by horizontal force couples between the beak and feet during the first third of the stride and the tail and feet during the last third of the stride. The reaction torque from individual rungs did not counter, but exacerbated the gravitational pitching moment, which was countered entirely by the free moment. Possible climbing limitations were explored using two different rung radii, each with low and high friction surfaces. Rung torque was limited in the large-radius, low-friction condition, however, rung condition did not significantly influence free moments produced. These findings have implications for our understanding of avian locomotor modules (i.e., coordinated actions of the head-neck, hindlimbs, and tail), the use of force couples in vertical locomotion, and the evolution of associated structures.


Author(s):  
Javier F Aceituno ◽  
Pu Wang ◽  
Liang Wang ◽  
Ahmed A Shabana

The aim of this paper is to study the influence of rail flexibility when a wheel/rail wear prediction model that computes the material loss based on an energy approach is used. The wheel/rail wear model used in this investigation is a simplified combined wear hypothesis that is based on the frictional energy loss in the contact patch. In order to account for wear and its distribution in a profiled wheel surface, the contact forces, creepages and location of the wheel/rail contact points are first calculated using a fully nonlinear multibody system (MBS) and three-dimensional contact formulations that account for the rail flexibility. The contact forces, creepages and contact point locations are defined as nonlinear functions of the rail deformations. These nonlinear expressions are used in the wear calculations. The wear distribution is considered to be proportional to the normal force in the contact area. Numerical simulations are first performed in order to compare between the results obtained using the simplified wheel/rail wear model and the results obtained using Archard’s wear model with a focus on sliding when the track is modeled as a rigid body. This simplified wear model is then used in the simulation of the MBS vehicle model in the case of a flexible body track, in which the rails are modeled using the finite element floating frame of reference approach and modal reduction techniques. The effect of the rail deformation on the wear results are examined by comparing these results with those obtained using the rigid-body track model.


2020 ◽  
Author(s):  
Lucie A. Huet ◽  
Hannah M. Emnett ◽  
Mitra J. Z. Hartmann

AbstractThe rodent vibrissal (whisker) system has been studied for decades as a model of active touch sensing. There are no sensors along the length of a whisker; all sensing occurs at the whisker base. Therefore, a large open question in many neuroscience studies is how an animal could estimate the three-dimensional location at which a whisker makes contact with an object. In the present work we simulated the exact shape of a real rat whisker to demonstrate the existence of a unique mapping from triplets of mechanical signals at the whisker base to the three-dimensional whisker-object contact point. We then used high speed video to record whisker deflections as an awake rat whisked against a peg and used the mechanics resulting from those deflections to extract the contact points along the peg surface. A video shows the contour of the peg gradually emerging during active whisking behavior.


Sign in / Sign up

Export Citation Format

Share Document