Influence of rail flexibility in a wheel/rail wear prediction model

Author(s):  
Javier F Aceituno ◽  
Pu Wang ◽  
Liang Wang ◽  
Ahmed A Shabana

The aim of this paper is to study the influence of rail flexibility when a wheel/rail wear prediction model that computes the material loss based on an energy approach is used. The wheel/rail wear model used in this investigation is a simplified combined wear hypothesis that is based on the frictional energy loss in the contact patch. In order to account for wear and its distribution in a profiled wheel surface, the contact forces, creepages and location of the wheel/rail contact points are first calculated using a fully nonlinear multibody system (MBS) and three-dimensional contact formulations that account for the rail flexibility. The contact forces, creepages and contact point locations are defined as nonlinear functions of the rail deformations. These nonlinear expressions are used in the wear calculations. The wear distribution is considered to be proportional to the normal force in the contact area. Numerical simulations are first performed in order to compare between the results obtained using the simplified wheel/rail wear model and the results obtained using Archard’s wear model with a focus on sliding when the track is modeled as a rigid body. This simplified wear model is then used in the simulation of the MBS vehicle model in the case of a flexible body track, in which the rails are modeled using the finite element floating frame of reference approach and modal reduction techniques. The effect of the rail deformation on the wear results are examined by comparing these results with those obtained using the rigid-body track model.

Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


Author(s):  
M. Ignesti ◽  
L. Marini ◽  
E. Meli ◽  
A. Rindi

The wear prediction at the wheel-rail interface is a fundamental problem in the railway field, mainly correlated to the planning of maintenance interventions, vehicle stability, and the possibility of researching strategies for the design of optimal wheel and rail profiles from the wear point of view. The authors in this work present a model specifically developed for the evaluation of the wheel and rail wear and of the wheel and rail profiles evolution. The model layout is made up of two mutually interactive parts: a vehicle model for the dynamical analysis and a model for the wear estimation. The first one is a 3D multibody model of a railway vehicle where the wheel-rail interaction is implemented in a C/C++ user routine. Particularly, the research of the contact points between wheel and rail is based on an innovative algorithm developed by authors in previous works, while normal and tangential forces in the contact patches are calculated according to the Hertz and Kalker’s global theory, respectively. The wear model is mainly based on experimental relationships found in literature between the removed material by wear and the energy dissipated by friction at the contact. It starts from the outputs of the dynamical simulations (position of contact points, contact forces, and global creepages) and calculates the pressures inside the contact patches through a local contact model; then, the material removed by wear is evaluated and the worn profiles of wheel and rail are obtained. In order to reproduce the wear evolution, the overall mileage traveled by the vehicle is divided into discrete steps, within which the wheel and rail profiles are constant; after carrying out the dynamical simulations relative to one step, the profiles are updated by means of the wear model. Therefore, the two models work alternately until completing the whole mileage. Moreover, the different time scales characterizing the wheel and rail wear evolutions require the development of a suitable strategy for the profile update; the strategy proposed by the authors is based both on the total distance traveled by the vehicle and on the total tonnage burden on the track. The entire model has been developed and validated in collaboration with Trenitalia S.p.A. and Rete Ferroviaria Italiana (RFI), which have provided the technical documentation and the experimental results relating to some tests performed with the vehicle DMU Aln 501 Minuetto on the Aosta-Pre Saint Didier line.


Author(s):  
Ender Cigeroglu ◽  
Ning An ◽  
Chia-Hsiang Menq

In this paper, an improved wedge damper model is presented, based on which the effects of wedge dampers on the forced response of frictionally constrained blades are investigated. In the analysis, while the blade is modeled as a constrained structure, the damper is considered as an unconstrained structure. The model of the damper includes six rigid body modes and several elastic modes, the number of which depends on the excitation frequency. In other words, the motion of the damper is not artificially constrained. When modeling the contact surfaces of the wedge damper, discrete contact points along with contact stiffness are evenly distributed on the two contact surfaces. At each contact point, contact stiffness is determined and employed in order to take into account the effects of higher frequency modes that are omitted in the dynamic analysis. Depending on the engine rpm, quasi-static contact analysis is initially employed to determine the contact area as well as the initial preload or gap at each contact point due to the centrifugal force. A friction model is employed to determine the three-dimensional nonlinear contact forces and the relationship between the contact forces and the relative motion is utilized by the Harmonic Balance method. As the relative motion is expressed as a modal superposition, the unknown variables, and thus the resulting nonlinear algebraic equations, in the Harmonic Balance method is in proportion to the number of modes employed, and therefore the number of contact points used is irrelevant. The developed method is applied to tuned bladed disk system and the effects of normal load on the rigid body motion of the damper are investigated. It is shown that, the effect of rotational motion is significant, particularly for the in-phase vibration modes.


Author(s):  
Inna Sharf ◽  
Yuning Zhang

Rigid-body impact modeling remains an intensive area of research spurred on by new applications in robotics, biomechanics, and more generally multibody systems. By contrast, the modeling of non-colliding contact dynamics has attracted significantly less attention. The existing approaches to solve non-colliding contact problems include compliant approaches in which the contact force between objects is defined explicitly as a function of local deformation, and complementarity formulations in which unilateral constraints are employed to compute contact interactions (impulses or forces) to enforce the impenetrability of the contacting objects. In this article, the authors develop a novel approach to solve the non-colliding contact problem for objects of arbitrary geometry in contact at multiple points. Similarly to the complementarity formulation, the solution is based on rigid-body dynamics and enforces contact kinematics constraints at the acceleration level. Differently, it leads to an explicit closed-form solution for the normal forces at the contact points. Integral to the proposed formulation is the treatment of tangential contact forces, in particular the static friction. These friction forces must be calculated as a function of microslip velocity or displacement at the contact point. Numerical results are presented for three test cases: 1) a thin rod sliding down a stationary wedge; 2) a cube rotating off the stationary wedge under application of an external moment and 3) the cube and the wedge both moving under application of a moment. To ascertain validity and correctness, the solutions to frictionless and frictional scenarios obtained with the proposed formulation are compared to those generated by using a commercial simulation tool MSC ADAMS.


2005 ◽  
Vol 128 (1) ◽  
pp. 116-127 ◽  
Author(s):  
Stephen Wiedmann ◽  
Bob Sturges

Compliant mechanisms for rigid part mating exist for prismatic geometries. A few instances are known of mechanisms to assemble screw threads. A comprehensive solution to this essentially geometric problem comprises at least three parts: parametric equations for nut and bolt contact in the critical starting phase of assembly, the possible space of motions between these parts during this phase, and the design space of compliant devices which accomplish the desired motions in the presence of friction and positional uncertainty. This work concentrates on the second part in which the threaded pair is modeled numerically, and contact tests are automated through software. Tessellated solid models were used during three-dimensional collision analysis to enumerate the approximate location of the initial contact point. The advent of a second contact point presented a more constrained contact state. Thus, the bolt is rotated about a vector defined by the initial two contact points until a third contact location was found. By analyzing the depth of intersection of the bolt into the nut as well as the vertical movement of the origin of the bolt reference frame, we determined that there are three types of contacts states present: unstable two-point, quasi-stable two-point, stable three point. The space of possible motions is bounded by these end conditions which will differ in detail depending upon the starting orientations. We investigated all potential orientations which obtain from a discretization of the roll, pitch, and yaw uncertainties, each of which has its own set of contact points. From this exhaustive examination, a full contact state history was determined, which lays the foundation for the design space of either compliant mechanisms or intelligent sensor-rich controls.


Author(s):  
Zhen Zhao ◽  
Caishan Liu ◽  
Bernard Brogliato

The objective of this paper is to implement and test the theory presented in a companion paper for the non-smooth dynamics exhibited in a bouncing dimer. Our approach revolves around the use of rigid body dynamics theory combined with constraint equations from the Coulomb's frictional law and the complementarity condition to identify the contact status of each contacting point. A set of impulsive differential equations based on Darboux–Keller shock dynamics is established that can deal with the complex behaviours involved in multiple collisions, such as the frictional effects, the local dissipation of energy at each contact point, and the dispersion of energy among various contact points. The paper will revisit the experimental phenomena found in Dorbolo et al . ( Dorbolo et al . 2005 Phys. Rev. Lett. 95 , 044101), and then present a qualitative analysis based on the theory proposed in part I. The value of the static coefficient of friction between the plate and the dimer is successfully estimated, and found to be responsible for the formation of the drift motion of the bouncing dimer. Plenty of numerical simulations are carried out, and precise agreements are obtained by the comparisons with the experimental results.


2005 ◽  
Vol 128 (3) ◽  
pp. 566-573 ◽  
Author(s):  
Dennis W. Hong ◽  
Raymond J. Cipra

One of the inherent problems of multi-limbed mobile robotic systems is the problem of multi-contact force distribution; the contact forces and moments at the feet required to support it and those required by its tasks are indeterminate. A new strategy for choosing an optimal solution for the contact force distribution of multi-limbed robots with three feet in contact with the environment in three-dimensional space is presented. The incremental strategy of opening up the friction cones is aided by using the “force space graph” which indicates where the solution is positioned in the solution space to give insight into the quality of the chosen solution and to provide robustness against disturbances. The “margin against slip with contact point priority” approach is also presented which finds an optimal solution with different priorities given to each foot contact point. Examples are presented to illustrate certain aspects of the method and ideas for other optimization criteria are discussed.


1996 ◽  
Vol 63 (4) ◽  
pp. 974-984 ◽  
Author(s):  
N. Sankar ◽  
V. Kumar ◽  
Xiaoping Yun

During manipulation and locomotion tasks encountered in robotics, it is often necessary to control the relative motion between two contacting rigid bodies. In this paper we obtain the equations relating the motion of the contact points on the pair of contacting bodies to the rigid-body motions of the two bodies. The equations are developed up to the second order. The velocity and acceleration constraints for contact, for rolling, and for pure rolling are derived. These equations depend on the local surface properties of each contacting body. Several examples are presented to illustrate the nature of the equations.


Author(s):  
Cai-Hua Xiongand ◽  
You-Lun Xiong ◽  
Michael Yu Wang

Prediction of passive forces in a frictional workpiece-fixture system is an important problem, since the contact forces have a strong influence on clamp design and on workpiece accuracy during machining. This paper presents a general method for the computation of the contact forces. First, based on the rigid-body kinematics, an indeterminate system of static equilibrium is defined, in which the passive, frictional contact forces cannot be determined arbitrarily as in an actively controlled robotic multi-finger grasp. Then, we define a locally elastic contact model to describe the nonlinear coupling between the contact forces and elastic deformations at the contact point. This model captures the essence of the passive contact. Further, a set of “compatibility” equations are given so that the elastic deformations among all passive contacts in the workpiece-fixture system result in a consistent set of rigid-body displacement of the workpiece in its global system. Finally, combining the locally elastic contact model and the “compatibility” conditions, we transform the force computation problem into a determinate system of nonlinear equations governing all of the elastic deformations at all of the passive contacts. By solving the resulting nonlinear equations with frictional constraints, we can accurately predict all contact forces in the frictional workpiece-fixtures system. This method is illustrated with example cases. The method presented here may also have an application to other passive, indeterminate problems such as power grasps in robotics.


Author(s):  
Ender Cigeroglu ◽  
Ning An ◽  
Chia-Hsiang Menq

In this paper, a forced response prediction method for the analysis of constrained and unconstrained structures coupled through frictional contacts is presented. This type of frictional contact problem arises in vibration damping of turbine blades, in which dampers and blades constitute the unconstrained and constrained structures, respectively. The model of the unconstrained/free structure includes six rigid body modes and several elastic modes, the number of which depends on the excitation frequency. In other words, the motion of the free structure is not artificially constrained. When modeling the contact surfaces between the constrained and free structure, discrete contact points along with contact stiffnesses are distributed on the friction interfaces. At each contact point, contact stiffness is determined and employed in order to take into account the effects of higher frequency modes that are omitted in the dynamic analysis. Depending on the normal force acting on the contact interfaces, quasistatic contact analysis is initially employed to determine the contact area as well as the initial preload or gap at each contact point due to the normal load. A friction model is employed to determine the three-dimensional nonlinear contact forces, and the relationship between the contact forces and the relative motion is utilized by the harmonic balance method. As the relative motion is expressed as a modal superposition, the unknown variables, and thus the resulting nonlinear algebraic equations in the harmonic balance method, are in proportion to the number of modes employed. Therefore the number of contact points used is irrelevant. The developed method is applied to a bladed-disk system with wedge dampers where the dampers constitute the unconstrained structure, and the effects of normal load on the rigid body motion of the damper are investigated. It is shown that the effect of rotational motion is significant, particularly for the in-phase vibration modes. Moreover, the effect of partial slip in the forced response analysis and the effect of the number of harmonics employed by the harmonic balance method are examined. Finally, the prediction for a test case is compared with the test data to verify the developed method.


Sign in / Sign up

Export Citation Format

Share Document