scholarly journals Three-dimensional contact point determination and contour reconstruction during active whisking behavior of the awake rat

2020 ◽  
Author(s):  
Lucie A. Huet ◽  
Hannah M. Emnett ◽  
Mitra J. Z. Hartmann

AbstractThe rodent vibrissal (whisker) system has been studied for decades as a model of active touch sensing. There are no sensors along the length of a whisker; all sensing occurs at the whisker base. Therefore, a large open question in many neuroscience studies is how an animal could estimate the three-dimensional location at which a whisker makes contact with an object. In the present work we simulated the exact shape of a real rat whisker to demonstrate the existence of a unique mapping from triplets of mechanical signals at the whisker base to the three-dimensional whisker-object contact point. We then used high speed video to record whisker deflections as an awake rat whisked against a peg and used the mechanics resulting from those deflections to extract the contact points along the peg surface. A video shows the contour of the peg gradually emerging during active whisking behavior.

2021 ◽  
pp. 146808742110080
Author(s):  
Jamshid Malekmohammadi Nouri ◽  
Ioannis Vasilakos ◽  
Youyou Yan

A new engine block with optical access has been designed and manufactured capable of running up to 3000 r/min with the same specification as the unmodified engine. The optical window allowed access to the full length of the liner over a width of 25 mm to investigate the lubricant flow and cavitation at contact point between the rings and cylinder-liner. In addition, it allowed good access into the combustion chamber to allow charged flow, spray and combustion visualisation and measurements using different optical methods. New custom engine management system with build in LabView allowed for the precise full control of the engine. The design of the new optical engine was a great success in producing high quality images of lubricant flow, cavitation formation and development at contact point at different engine speeds ranging from 208 to 3000 r/min and lubricant temperatures (30°C–70°C) using a high-speed camera. The results under motorised operation confirmed that there was no cavitation at contact points during the intake/exhaust strokes due to low in-cylinder presure, while during compression/expansion strokes, with high in-cylinder pressure, considerable cavities were observed, in particular, during the compression stroke. Lubricant temperatures had the effect of promoting cavities both in their intensity and covered ring area up to 50°C as expected. Beyond that, although the cavitation intensity increases further with temperature, its area reduces due to possible collapse of the cavitating bubbles at higher temperature. The change of engine speed from 208 to 800 r/min increased cavitating area considerably by 52% of the ring area and was further increased by 19% at 1000 r/min. After that, the results showed very small increase in cavitation area (1.3% at 2000 r/min) with similar intensity and distribution across the ring.


2005 ◽  
Vol 128 (1) ◽  
pp. 116-127 ◽  
Author(s):  
Stephen Wiedmann ◽  
Bob Sturges

Compliant mechanisms for rigid part mating exist for prismatic geometries. A few instances are known of mechanisms to assemble screw threads. A comprehensive solution to this essentially geometric problem comprises at least three parts: parametric equations for nut and bolt contact in the critical starting phase of assembly, the possible space of motions between these parts during this phase, and the design space of compliant devices which accomplish the desired motions in the presence of friction and positional uncertainty. This work concentrates on the second part in which the threaded pair is modeled numerically, and contact tests are automated through software. Tessellated solid models were used during three-dimensional collision analysis to enumerate the approximate location of the initial contact point. The advent of a second contact point presented a more constrained contact state. Thus, the bolt is rotated about a vector defined by the initial two contact points until a third contact location was found. By analyzing the depth of intersection of the bolt into the nut as well as the vertical movement of the origin of the bolt reference frame, we determined that there are three types of contacts states present: unstable two-point, quasi-stable two-point, stable three point. The space of possible motions is bounded by these end conditions which will differ in detail depending upon the starting orientations. We investigated all potential orientations which obtain from a discretization of the roll, pitch, and yaw uncertainties, each of which has its own set of contact points. From this exhaustive examination, a full contact state history was determined, which lays the foundation for the design space of either compliant mechanisms or intelligent sensor-rich controls.


2014 ◽  
Vol 800-801 ◽  
pp. 672-677
Author(s):  
Jian Hua Guo ◽  
Hong Yuan Jiang ◽  
Yi Zhen Wu ◽  
Wen Ya Chu ◽  
Qing Xin Meng

The meshing impact noise caused by the gradually engagement between double helical synchronous belt and the pulley was reduced due to its spiral angle effect. Therefore, double helical synchronous belt transmission receives much concern with its excellent characteristics of de-noising, low transmission error and high carrying capacity. The profiles of synchronous belt and belt pulley were studied based on conjugate-curvature high degree contact meshing theory under the circumstance that the pitch of belt and belt pulley are identical. The higher contact strength of the belt teeth and a smaller clearance in the contact point adjacent area were ensured with Hertz contact theory as the synchronous belt is in contact with pulley. And then a conjugated arc tooth profile with two-step contact and three-step adjacent gap infinitesimal was proposed based on the simple easy to processing method, which was adopted as main parameters for double synchronous belt and pulley’s normal teeth profile. The three-dimensional transmission model was built and the static nonlinear contact analysis was done with finite element software ANSYS. Finally, the noise experiment was conducted on the high speed test bench to compare the noise reduction effect between double helical synchronous belt and straight tooth timing belt with the identical end face profile. The simulation and experiment result show that the double helical synchronous belt transmission can reduce noise level by 11dB approximately compared with straight tooth timing belt transmission.


2006 ◽  
Vol 23 (7) ◽  
pp. 749-770 ◽  
Author(s):  
Dawei Zhao ◽  
Erfan G. Nezami ◽  
Youssef M.A. Hashash ◽  
Jamshid Ghaboussi

PurposeDevelop a new three‐dimensional discrete element code (BLOKS3D) for efficient simulation of polyhedral particles of any size. The paper describes efficient algorithms for the most important ingredients of a discrete element code.Design/methodology/approachNew algorithms are presented for contact resolution and detection (including neighbor search and contact detection sections), contact point and force detection, and contact damping. In contact resolution and detection, a new neighbor search algorithm called TLS is described. Each contact is modeled with multiple contact points. A non‐linear force‐displacement relationship is suggested for contact force calculation and a dual‐criterion is employed for contact damping. The performance of the algorithm is compared to those currently available in the literature.FindingsThe algorithms are proven to significantly improve the analysis speed. A series of examples are presented to demonstrate and evaluate the performance of the proposed algorithms and the overall discrete element method (DEM) code.Originality/valueLong computational times required to simulate large numbers of particles have been a major hindering factor in extensive application of DEM in many engineering applications. This paper describes an effort to enhance the available algorithms and further the engineering application of DEM.


Author(s):  
Lindsey L. Reader ◽  
David R. Carrier ◽  
Franz Goller ◽  
Michael R. Isaacs ◽  
Alexis Moore Crisp ◽  
...  

During vertical climbing, the gravitational moment tends to pitch the animal's head away from the climbing surface and this may be countered by 1) applying a correcting torque at a discrete contact point, or 2) applying opposing horizontal forces at separate contact points to produce a free moment. We tested these potential strategies in small parrots with an experimental climbing apparatus imitating the fine branches and vines of their natural habitat. The birds climbed on a vertical ladder with four instrumented rungs that measured three-dimensional force and torque, representing the first measurements of multiple contacts from a climbing bird. The parrots ascend primarily by pulling themselves upward using the beak and feet. They resist the gravitational pitching moment with a free moment produced by horizontal force couples between the beak and feet during the first third of the stride and the tail and feet during the last third of the stride. The reaction torque from individual rungs did not counter, but exacerbated the gravitational pitching moment, which was countered entirely by the free moment. Possible climbing limitations were explored using two different rung radii, each with low and high friction surfaces. Rung torque was limited in the large-radius, low-friction condition, however, rung condition did not significantly influence free moments produced. These findings have implications for our understanding of avian locomotor modules (i.e., coordinated actions of the head-neck, hindlimbs, and tail), the use of force couples in vertical locomotion, and the evolution of associated structures.


Author(s):  
Javier F Aceituno ◽  
Pu Wang ◽  
Liang Wang ◽  
Ahmed A Shabana

The aim of this paper is to study the influence of rail flexibility when a wheel/rail wear prediction model that computes the material loss based on an energy approach is used. The wheel/rail wear model used in this investigation is a simplified combined wear hypothesis that is based on the frictional energy loss in the contact patch. In order to account for wear and its distribution in a profiled wheel surface, the contact forces, creepages and location of the wheel/rail contact points are first calculated using a fully nonlinear multibody system (MBS) and three-dimensional contact formulations that account for the rail flexibility. The contact forces, creepages and contact point locations are defined as nonlinear functions of the rail deformations. These nonlinear expressions are used in the wear calculations. The wear distribution is considered to be proportional to the normal force in the contact area. Numerical simulations are first performed in order to compare between the results obtained using the simplified wheel/rail wear model and the results obtained using Archard’s wear model with a focus on sliding when the track is modeled as a rigid body. This simplified wear model is then used in the simulation of the MBS vehicle model in the case of a flexible body track, in which the rails are modeled using the finite element floating frame of reference approach and modal reduction techniques. The effect of the rail deformation on the wear results are examined by comparing these results with those obtained using the rigid-body track model.


1999 ◽  
Vol 121 (3) ◽  
pp. 418-424 ◽  
Author(s):  
Tsuneo Yoshikawa

This paper provides a unified theoretical framework for analytical characterization of grasping and manipulation capability of robotic grippers and hands as well as fixing capability of fixtures and vises. The concept of passive closure and active closure for general constraining mechanisms consisting of fixed and/or articulated constraining limbs is introduced. These concepts are useful for explicitly distinguishing the two kinds of capabilities of the constraining mechanism: Passive closure represents the ability of fixing devices and active closure represents the ability of manipulating devices. Passive closure is further classified into passive form closure and passive force closure. Passive form closure is essentially the same as Reuleaux’s classical form closure and passive force closure is a substantial generalization of classical force closure to the case where articulated constraining limbs exist. Conditions for these closures to hold are studied. After a brief review of conditions for passive form closure, several conditions for passive force closure are given. One outcome is that, under the assumption that the contact points are frictionless and the active contact points are independent, for the existence of passive force closure there must be at least six (three) fixed contact points and one active contact point in the case of three-dimensional (two-dimensional, respectively) space. Finally, a necessary and sufficient condition for active closure is given for the case of frictional point contacts by constraining limbs with enough degrees-of-freedom. This condition consists of a general positioning condition of contact points and the existence condition of nonzero internal force. This condition has a quite natural physical interpretation.


Author(s):  
Robert W. Mackin

This paper presents two advances towards the automated three-dimensional (3-D) analysis of thick and heavily-overlapped regions in cytological preparations such as cervical/vaginal smears. First, a high speed 3-D brightfield microscope has been developed, allowing the acquisition of image data at speeds approaching 30 optical slices per second. Second, algorithms have been developed to detect and segment nuclei in spite of the extremely high image variability and low contrast typical of such regions. The analysis of such regions is inherently a 3-D problem that cannot be solved reliably with conventional 2-D imaging and image analysis methods.High-Speed 3-D imaging of the specimen is accomplished by moving the specimen axially relative to the objective lens of a standard microscope (Zeiss) at a speed of 30 steps per second, where the stepsize is adjustable from 0.2 - 5μm. The specimen is mounted on a computer-controlled, piezoelectric microstage (Burleigh PZS-100, 68/μm displacement). At each step, an optical slice is acquired using a CCD camera (SONY XC-11/71 IP, Dalsa CA-D1-0256, and CA-D2-0512 have been used) connected to a 4-node array processor system based on the Intel i860 chip.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2021 ◽  
Author(s):  
Scott J. Peltier ◽  
Brian E. Rice ◽  
Ethan Johnson ◽  
Venkateswaran Narayanaswamy ◽  
Marvin E. Sellers

Sign in / Sign up

Export Citation Format

Share Document