Hydraulic performance of a large slanted axial‐flow pump

2010 ◽  
Vol 27 (2) ◽  
pp. 243-256 ◽  
Author(s):  
Zhengwei Wang ◽  
Guangjie Peng ◽  
Lingjiu Zhou ◽  
Deyi Hu
Author(s):  
Qiang Pan ◽  
Weidong Shi ◽  
Desheng Zhang ◽  
BPM van Esch ◽  
Ruijie Zhao

With environmental awareness growing in many countries, governments are taking measures to reduce mortality of migrating fish in pumping stations. Manufacturers seek to develop pumps that are less damaging to fish and still provide good hydraulic performance, but little is known about the implications design modifications may have on internal flow characteristics and overall hydraulic performance. In this paper, an integrated design method is proposed that combines a validated blade strike model for fish damage and a computational fluid dynamics method to assess the pump performance. A redesign of an existing, conventional, axial flow pump is presented as an example in this paper. It shows how the design of the impeller blades was modified stepwise in order to reduce fish mortality while its hydraulic performance was monitored. Computational fluid dynamics analysis of the flow near the hub of the highly skewed blades indicated that unconventional design modifications were required to ensure optimum flow behavior. In the final fish-friendly design, the risk of fish mortality has reduced considerably while the hydraulic performance of the pump is still acceptable for practical application.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fan Yang ◽  
Hao-ru Zhao ◽  
Chao Liu

In order to investigate the influence of adjustable outlet guide vane on the hydraulic performance of axial-flow pump at part loads, the axial-flow pump with 7 different outlet guide vane adjustable angles was simulated based on the RNG k-ε turbulent model and Reynolds time-averaged equations. The Vector graphs of airfoil flow were analyzed in the different operating conditions for different adjustable angles of guide vane. BP-ANN prediction model was established about the effect of adjustable outlet guide vane on the hydraulic performance of axial-flow pump based on the numerical results. The effectiveness of prediction model was verified by theoretical analysis and numerical simulation. The results show that, with the adjustable angle of guide vane increasing along clockwise, the high efficiency area moves to the large flow rate direction; otherwise, that moves to the small flow rate direction. The internal flow field of guide vane is improved by adjusting angle, and the flow separation of tail and guide vane inlet ledge are decreased or eliminated, so that the hydraulic efficiency of pumping system will be improved. The prediction accuracy of BP-ANN model is 1%, which can meet the requirement of practical engineering.


Author(s):  
Zhaodan Fei ◽  
Hui Xu ◽  
Rui Zhang ◽  
Yuan Zheng ◽  
Tong Mu ◽  
...  

The blade angle has a great effect on hydraulic performance and internal flow field for axial-flow pumps. This research investigated the effect of the blade angle on hydraulic performance and tip leakage vortex (TLV) of a slanted axial-flow pump. The hydraulic performance and the TLV are compared with different setting angles. The dimensionless turbulence kinetic energy (TKE) is used to investigate the TLV. A novel variable fv is utilized to analyze the relation among the TLV, strain tensor and vorticity tensor. The proper orthogonal decomposition (POD) method is used to analyze TLV structure. The results show that with the increase of the blade angle, the pump head is getting larger, the flow rate of the best efficiency moves to be larger, and both the primary TLV (P-TLV) and the secondary TLV (S-TLV) are getting stronger. The P-TLV often exists in the outer edge of TKE distribution and S-TLVs often exist in the largest value area of TKE. This phenomenon is more evident with blade angle increasing. Through POD method, it shows that the first six modes contain more than 90% of TKE. The reason why the TKE value near the region of S-TLV is high is that the tip leakage flow is a kind of jet-like flow with high kinetic energy. The main structure of the P-TLV is shown in modes 4−6, resulting in a reflux zone but not with the highest TKE.


2015 ◽  
Vol 2015 (0) ◽  
pp. _1613-1_-_1613-2_
Author(s):  
Tomoki TSUNEDA ◽  
Satoshi WATANABE ◽  
Shinichi TSUDA ◽  
Akinori FURUKAWA

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Lei Xu ◽  
Dongtao Ji ◽  
Wei Shi ◽  
Bo Xu ◽  
Weigang Lu ◽  
...  

Axial flow pump has been widely used in hydraulic engineering, agriculture engineering, water supply and sewerage works, and shipbuilding industry. In order to improve the hydraulic performance of pump under off-design working conditions, the influence of the inlet segment axial chord and inlet angle adjustment of the guide vane on the pump segment efficiency and flow filed was simulated by using the renormalization group (RNG) k − ε turbulent model based on the Reynolds-averaged Navier–Stokes equations. The results indicate that the inlet segment axial chord and inlet angle adjustment of guide vane have a strong influence on the pump segment efficiency. Considering the support function and hydraulic loss of the guide vane, the inlet segment axial chord is set to 0.25 times the axial chord of guide vane. On the basis of the inlet angle of the guide vane under design conditions, when the inlet segment angle is turned counterclockwise, the pump segment efficiency is improved in the lower flow rate region; moreover, the pump segment efficiency is improved in the larger flow rate region when the inlet segment angle is turned clockwise. As the conditions deviate from the design working conditions, the influence of the guide vane inlet angle on the pump segment efficiency increases. If the inlet segment angle is properly adjusted under off-design working conditions, the flow pattern in the guide vane is improved and the hydraulic loss is decreased, because the inlet segment angle matches with the flow direction of impeller outlet; consequently, the pump segment efficiency is increased.


2021 ◽  
Author(s):  
Chen Li ◽  
Hongming Wang

Three dimensional Reynolds averaged N-S equation and S-A turbulent model were adopted to simulate the flow field and hydraulic performance of the waterjet axial flow pump with the different impeller axial clearance. The numerical research results show that with the increase of axial clearance size, total pressure and static pressure rise at first and then decreases, torque and shaft power remain basically unchanged, the efficiency decreases gradually, the suction surface separation zone of stator expanded under the design condition. When the axial clearance is 30mm, the pump hydraulic performance and flow field are the best, and stator load distribution is the most uniform. When the axial clearance is 40–50mm the load of the lower part of stator leading edge is reduced greatly, which is not conducive to maintain static blade strength and maintain the stator rectifying action.


2021 ◽  
Vol 107 ◽  
pp. 15-25
Author(s):  
M. Prince Moifatswane ◽  
Nkosinathi Madushele ◽  
Noor A. Ahmed

Thus far, axial flow pumps remain a significant hydrodynamic unit. These pumps have common applications for various systems that require a high flow rate and a lower head. They tend to be less efficient and consume excessive power when operating at low flow conditions. Most of the studies focus on improving the hydraulic performance of these pumps based on the best efficiency point (BEP) flow conditions. This approach is mostly based on the assumption that the pump will always operate at BEP. However, this is not always the case, because the operational condition of the pump may require an adjustment to meet certain system demands. Hence, it is necessary to emphasize the need to improve the hydraulic performance of these pumps for multiple flow conditions. This means that in addition to BEP, the lowest, and the highest operational conditions need to be considered when improving the pump performance. Also, it is important to review the phenomenon of cavitation in every design optimization investigation, given its significance to pump performance and some misrepresentation which are sometimes associated with its assessment. Therefore. the main contribution of this article is to briefly discuss the successful and unsuccessful design optimization methods of an axial flow pump. Furthermore, it highlights the significance of improving the pump performance at multiple flow conditions and also to incorporate the analysis of using CFD methods to analyze the results of cavitation performance in every pump performance improvement investigation.


Sign in / Sign up

Export Citation Format

Share Document