Multi-sensor optimal deployment based efficient and synchronous data acquisition in large three-dimensional physical similarity simulation

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yuyu Hao ◽  
Shugang Li ◽  
Tianjun Zhang

Purpose This paper aims to propose a deployment optimization and efficient synchronous acquisition method for compressive stress sensors used by stress distribution law research based on the genetic algorithm and numerical simulations. The authors established a new method of collecting the mining compressive stress-strain distribution data to address the problem of the number of sensors and to optimize the sensor locations in physical similarity simulations to improve the efficiency and accuracy of data collection. Design/methodology/approach First, numerical simulations were used to obtain the compressive stress distribution curve under specific mining conditions. Second, by comparing the mean square error between a fitted curve and simulation data for different numbers of sensors, a genetic algorithm was used to optimize the three-dimensional (3D) spatial deployment of sensors. Third, the authors designed an efficient synchronous acquisition module to allow distributed sensors to achieve synchronous and efficient acquisition of hundreds of data points through a built-in on-board database and a synchronous sampling communication structure. Findings The sensor deployment scheme was established through the genetic algorithm, A synchronous and selective data acquisition method was established for reduced the amount of sensor data required under synchronous acquisition and improved the system acquisition efficiency. The authors obtained a 3D compressive stress distribution when the advancement was 200 m on a large-scale 3D physical similarity simulation platform. Originality/value The proposed method provides a new optimization method for sensor deployment in physical similarity simulations, which improves the efficiency and accuracy of system data acquisition, providing accurate acquisition data for experimental data analysis.

2015 ◽  
Vol 741 ◽  
pp. 199-203
Author(s):  
Xiang Li ◽  
Jun Min Huang

This work introduces the workings of reverse engineering, its characteristics and application methods and proposes a data acquisition system applicable to industrial design, namely, three dimensional sensing system (3DSS). This work also gives a detailed account of 3DSS data acquisition methods and issues that deserve special attention in operation. A car model reconstruction case is provided as an example to study the performance of 3DSS in reverse engineering. Results have confirmed the significant role of this data acquisition method in reverse engineering.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3880 ◽  
Author(s):  
Javier Díez-González ◽  
Rubén Álvarez ◽  
David González-Bárcena ◽  
Lidia Sánchez-González ◽  
Manuel Castejón-Limas ◽  
...  

Positioning asynchronous architectures based on time measurements are reaching growing importance in Local Positioning Systems (LPS). These architectures have special relevance in precision applications and indoor/outdoor navigation of automatic vehicles such as Automatic Ground Vehicles (AGVs) and Unmanned Aerial Vehicles (UAVs). The positioning error of these systems is conditioned by the algorithms used in the position calculation, the quality of the time measurements, and the sensor deployment of the signal receivers. Once the algorithms have been defined and the method to compute the time measurements has been selected, the only design criteria of the LPS is the distribution of the sensors in the three-dimensional space. This problem has proved to be NP-hard, and therefore a heuristic solution to the problem is recommended. In this paper, a genetic algorithm with the flexibility to be adapted to different scenarios and ground modelings is proposed. This algorithm is used to determine the best node localization in order to reduce the Cramér-Rao Lower Bound (CRLB) with a heteroscedastic noise consideration in each sensor of an Asynchronous Time Difference of Arrival (A-TDOA) architecture. The methodology proposed allows for the optimization of the 3D sensor deployment of a passive A-TDOA architecture, including ground modeling flexibility and heteroscedastic noise consideration with sequential iterations, and reducing the spatial discretization to achieve better results. Results show that optimization with 15% of elitism and a Tournament 3 selection strategy offers the best maximization for the algorithm.


2019 ◽  
Vol 36 (9) ◽  
pp. 3164-3179
Author(s):  
Punjan Dohare ◽  
Amol P. Bhondekar ◽  
Anupma Sharma ◽  
C. Ghanshyam

Purpose The purpose of this paper is to understand the effect of airflow dynamics on vortices for different flow rates using the human nose three-dimensional model. Design/methodology/approach Olfaction originates with air particles travelling from an external environment to the upper segment of the human nose. This phenomenon is generally understood by using the nasal airflow dynamics, which enhances the olfaction by creating the vortices in the human nose. An anatomical three-dimensional model of the human nasal cavity from computed tomography (CT) scan images using the MIMICS software (Materialise, USA) was developed in this study. Grid independence test was performed through volume flow rate, pressure drop from nostrils and septum and average velocity near the nasal valve region using a four computational mesh model. Computational fluid dynamics (CFD) was used to examine the flow pattern and influence of airflow dynamics on vortices in the nasal cavity. Numerical simulations were conducted for the flow rates of 7.5, 10, 15 and 20 L/min using numerical finite volume methods. Findings At coronal cross-sections, dissimilar nasal airflow patterns were observed for 7.5, 10, 15 and 20 L/min rate of fluid flow in the human nasal cavity. Vortices that are found at the boundaries with minimum velocity creates deceleration zone in the nose vestibule region, which is accompanied by flow segregation. Maximum vortices were observed in the nasal valve region and the posterior end of the turbinate region, which involves mixing and recirculation and is responsible for enhancing the smelling process. Practical implications The proposed analysis is applicable to design the sensor chamber for electronic noses. Originality/value In this paper, the influence of airflow dynamics on vortices in the human nasal cavity is discussed through numerical simulations.


2000 ◽  
Vol 52 (3) ◽  
pp. 393-397 ◽  
Author(s):  
Han Yull Hwang ◽  
Tae Soon Park ◽  
Jong Man Lee ◽  
Keon Ho Han

2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 90-92 ◽  
Author(s):  
Mark E. Linskey

✓ By definition, the term “radiosurgery” refers to the delivery of a therapeutic radiation dose in a single fraction, not simply the use of stereotaxy. Multiple-fraction delivery is better termed “stereotactic radiotherapy.” There are compelling radiobiological principles supporting the biological superiority of single-fraction radiation for achieving an optimal therapeutic response for the slowly proliferating, late-responding, tissue of a schwannoma. It is axiomatic that complication avoidance requires precise three-dimensional conformality between treatment and tumor volumes. This degree of conformality can only be achieved through complex multiisocenter planning. Alternative radiosurgery devices are generally limited to delivering one to four isocenters in a single treatment session. Although they can reproduce dose plans similar in conformality to early gamma knife dose plans by using a similar number of isocenters, they cannot reproduce the conformality of modern gamma knife plans based on magnetic resonance image—targeted localization and five to 30 isocenters. A disturbing trend is developing in which institutions without nongamma knife radiosurgery (GKS) centers are championing and/or shifting to hypofractionated stereotactic radiotherapy for vestibular schwannomas. This trend appears to be driven by a desire to reduce complication rates to compete with modern GKS results by using complex multiisocenter planning. Aggressive advertising and marketing from some of these centers even paradoxically suggests biological superiority of hypofractionation approaches over single-dose radiosurgery for vestibular schwannomas. At the same time these centers continue to use the term radiosurgery to describe their hypofractionated radiotherapy approach in an apparent effort to benefit from a GKS “halo effect.” It must be reemphasized that as neurosurgeons our primary duty is to achieve permanent tumor control for our patients and not to eliminate complications at the expense of potential late recurrence. The answer to minimizing complications while maintaining maximum tumor control is improved conformality of radiosurgery dose planning and not resorting to homeopathic radiosurgery doses or hypofractionation radiotherapy schemes.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1194
Author(s):  
Thejus Pathmakumar ◽  
Madan Mohan Rayguru ◽  
Sriharsha Ghanta ◽  
Manivannan Kalimuthu ◽  
Mohan Rajesh Elara

The hydro blasting of metallic surfaces is an essential maintenance task in various industrial sites. Its requirement of a considerable labour force and time, calls for automating the hydro blasting jobs through mobile robots. A hydro blasting robot should be able to cover the required area for a successful implementation. If a conventional robot footprint is chosen, the blasting may become inefficient, even though the concerned area is completely covered. In this work, the blasting arm’s sweeping angle is chosen as the robot’s footprint for hydro blasting task, and a multi-objective optimization-based framework is proposed to compute the optimal sweeping arc. The genetic algorithm (GA) methodology is exploited to compute the optimal footprint, which minimizes the blasting time and energy simultaneously. Multiple numerical simulations are performed to show the effectiveness of the proposed approach. Moreover, the strategy is successfully implemented on our hydro blasting robot named Hornbill, and the efficacy of the proposed approach is validated through experimental trials.


Sign in / Sign up

Export Citation Format

Share Document