Tuning of controller for an aircraft flight control system based on particle swarm optimization

2016 ◽  
Vol 88 (6) ◽  
pp. 799-809 ◽  
Author(s):  
Emre Kiyak

Purpose This study aims to present a method for the conceptual design and simulation of an aircraft flight control system. Design/methodology/approach The design methodology is based on particle swarm optimization (PSO). PSO can be used to improve the performance of conventional controllers. The aim of the present study is threefold. First, it attempts to detect and isolate faults in an aircraft model. Second, it is to design a proportional (P) controller, a proportional derivative (PD) controller, a proportional-integral (PI) controller and a fuzzy controller for an aircraft model. Third, it is to design a PD controller for an aircraft using a PSO algorithm. Findings Conventional controllers, an intelligent controller and a PD controller-based PSO were investigated for flight control. It was seen that the P controller, the PI controller and the PD controller-based PSO caused overshoot. These overshoots were 18.5, 87.7 and 2.6 per cent, respectively. Overshoot was not seen using the PD controller or fuzzy controller. Steady state errors were almost zero for all controllers. The PD controller had the best settling time. The fuzzy controller was second best. The PD controller-based PSO was the third best, but the result was close to the others. Originality/value This study shows the implementation of the present algorithm for a specified space mission and also for study regarding variation of performance parameters. This study shows fault detection and isolation procedures and also controller gain choice for a flight control system. A comparison between conventional controllers and PD-based PSO controllers is presented. In this study, sensor fault detection and isolation are carried out, and, also, root locus, time domain analysis and Routh–Hurwitz methods are used to find the conventional controller gains which differ from other studies. A fuzzy controller is created by the trial and error method. Integral of squared time multiplied by squared error is used as a performance function type in PSO.

2019 ◽  
Vol 92 (2) ◽  
pp. 264-270
Author(s):  
Firat Sal

Purpose The purpose of this paper presents the effects of actively morphing root chord and taper on the energy of the flight control system (i.e. FCS). Design/methodology/approach Via regarding previously mentioned purposes, sophisticated and realistic helicopter models are benefitted to examine the energy of the FCS. Findings Helicopters having actively morphing blade root chord length and blade taper consume less control energy than the ones having one of or any of passively morphing blade root chord length and blade taper. Practical implications Actively morphing blade root chord length and blade taper can be used for cheaper helicopter operations. Originality/value The main originality of this paper is applying active morphing strategy on helicopter blade root chord and blade taper. In this paper, it is also found that using active morphing strategy on helicopter blade root chord and blade taper reasons less energy consumption than using either passively morphing blade root chord length plus blade taper or not any. This causes also less fuel consumption and green environment.


Sign in / Sign up

Export Citation Format

Share Document