An automatic system for a helicopter autopilot performance evaluation

2019 ◽  
Vol 91 (6) ◽  
pp. 880-885 ◽  
Author(s):  
Antoni Kopyt ◽  
Sebastian Topczewski ◽  
Marcin Zugaj ◽  
Przemyslaw Bibik

Purpose The purpose of this paper is to elaborate and develop an automatic system for automatic flight control system (AFCS) performance evaluation. Consequently, the developed AFCS algorithm is implemented and tested in a virtual environment on one of the mission task elements (MTEs) described in Aeronautical Design Standard 33 (ADS-33) performance specification. Design/methodology/approach Control algorithm is based on the Linear Quadratic Regulator (LQR) which is adopted to work as a controller in this case. Developed controller allows for automatic flight of the helicopter via desired three-dimensional trajectory by calculating iteratively deviations between desired and actual helicopter position and multiplying it by gains obtained from the LQR methodology. For the AFCS algorithm validation, the objective data analysis is done based on specified task accomplishment requirements, reference trajectory and actual flight parameters. Findings In the paper, a description of an automatic flight control algorithm for small helicopter and its evaluation methodology is presented. Necessary information about helicopter dynamic model is included. The test and algorithm analysis are performed on a slalom maneuver, on which the handling qualities are calculated. Practical implications Developed automatic flight control algorithm can be adapted and used in autopilot for a small helicopter. Methodology of evaluation of an AFCS performance can be used in different applications and cases. Originality/value In the paper, an automatic flight control algorithm for small helicopter and solution for the validation of developed AFCS algorithms are presented.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sebastian Topczewski ◽  
Marcin Żugaj ◽  
Przemyslaw Bibik

Purpose The purpose of this paper is to test the performance of the control system developed for the helicopter automatic approach and landing on the moving vessel deck, when different values of backlashes are applied to the four control actuators. Design/methodology/approach The system consists of automatic control algorithm based on the linear quadratic regulator and the vessel motion prediction algorithm based on autoregressive method with parameters calculated using Burg’s method. Necessary navigation data is provided by on-board inertial navigation system/Global Positioning System. Calculated control commands are executed by four electromechanical actuators. Performance of the mission, which is based on selected procedure of approach and landing of the helicopter on the moving vessel deck, is analyzed taking into account different values of backlashes applied to the actuators. Findings In this paper, a description of the control system dedicated for automatic approach and landing of the helicopter on the moving vessel deck is shown. Necessary information about helicopter dynamic model, control system and vessel motion model is included. Tests showing influence of actuator backlashes on the mission performance are presented. Practical implications The developed control methodology can be adapted for selected helicopter and used in prospective development of an automatic flight control system (AFCS) or in a simulator. The system can be used to define in which conditions helicopter can perform safe and successful automatic approach and landing on a moving vessel deck. Originality/value In this paper, an integrated control system is presented; influence of the control actuator backlashes on the mission performance is analyzed.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 287
Author(s):  
Byeongjin Kim ◽  
Soohyun Kim

Walking algorithms using push-off improve moving efficiency and disturbance rejection performance. However, the algorithm based on classical contact force control requires an exact model or a Force/Torque sensor. This paper proposes a novel contact force control algorithm based on neural networks. The proposed model is adapted to a linear quadratic regulator for position control and balance. The results demonstrate that this neural network-based model can accurately generate force and effectively reduce errors without requiring a sensor. The effectiveness of the algorithm is assessed with the realistic test model. Compared to the Jacobian-based calculation, our algorithm significantly improves the accuracy of the force control. One step simulation was used to analyze the robustness of the algorithm. In summary, this walking control algorithm generates a push-off force with precision and enables it to reject disturbance rapidly.


2018 ◽  
Vol 90 (5) ◽  
pp. 858-868 ◽  
Author(s):  
Muhammad Taimoor ◽  
Li Aijun ◽  
Rooh ul Amin ◽  
Hongshi Lu

Purpose The purpose of this paper is to design linear quadratic regulator (LQR) based Luenberger observer for the estimation of unknown states of aircraft. Design/methodology/approach In this paper, the LQR-based Luenberger observer is deliberated for autonomous level flight of unmanned aerial vehicle (UAV) which has been attained productively. Various modes like phugoid and roll modes are exploited for controlling the rates of UAV. The Luenberger observer is exploited for estimation of the mysterious states of the system. The rates of roll, yaw and pitch are used as an input to the observer, while the remaining states such as velocities and angles have been anticipated. The main advantage of using Luenberger observer was to reduce the cost of the system which has been achieved lucratively. The Luenberger observer proposes sturdiness at the rate of completion to conquest over the turmoil and insecurities to overcome the privileged recital. The FlightGear simulator is exploited for the endorsement of the recital of the Luenberger observer-based autopilot. The level flight has been subjugated lucratively and has been legitimated by exploiting the FlightGear simulator. The authenticated and the validated results are offered in this paper. Microsoft Visual Studio has been engaged as a medium between the MATLAB and FlightGear Simulator. Findings The suggested observer based on LQR ensures the lucrative approximation of the unknown states of the system as well as the successful level flight of the system. The Luenberger observer is used for approximation of states while LQR is used as controller. Originality/value In this research work, not only the estimation of unknown states of both longitudinal and lateral model is made but also the level flight is achieved by using those estimated states and the autopilot is validated by using the FlightGear, while in most of the research work only the estimation is made of only longitudinal or lateral model.


Kybernetes ◽  
2017 ◽  
Vol 46 (4) ◽  
pp. 706-727 ◽  
Author(s):  
E. Ertugrul Karsak ◽  
Melis Almula Karadayi

Purpose This paper aims to address performance measurement in the health-care sector, which gains increasing importance for most countries because growing health expenditures and increased quality and competition in the health sector require hospitals to use their resources efficiently. Health policy-makers and health-care managers stress the need for developing a robust performance evaluation methodology for health-care organizations. Design/methodology/approach This paper presents an imprecise data envelopment analysis (DEA) framework for evaluating the health-care performance of 26 districts in Istanbul, a metropolis with nearly 15 million inhabitants. The proposed methodology takes into account both quantitative and qualitative data represented as linguistic variables for performance evaluation. Moreover, this study reckons that weight flexibility in DEA assessments can lead to unrealistic weighting schemes for some inputs and outputs, which are likely to result in overstated efficiency scores for a number of decision-making units (in here, districts). To overcome this problem, a weight restricted imprecise DEA model that constrains weight flexibility in DEA is proposed. Findings The proposed imprecise DEA approach sets forth a more realistic decision methodology for evaluating the relative health-care performance and also enables to determine the best district in terms of health-care performance in Istanbul. Originality/value This paper includes the quality dimension, which has been overlooked in previous studies, into the health-care performance evaluation of districts. Moreover, it circumvents unrealistic weight flexibility which may distort the relative evaluation of health-care performance.


Author(s):  
M. Alizadeh ◽  
C. Ratanasawanya ◽  
M. Mehrandezh ◽  
R. Paranjape

A vision-based servoing technique is proposed for a 2 degrees-of-freedom (dof) model helicopter equipped with a monocular vision system. In general, these techniques can be categorized as image- and position-based, where the task error is defined in the image plane in the former and in the physical space in the latter. The 2-dof model helicopter requires a configuration-dependent feed-forward control to compensate for gravitational forces when servoing on a ground target. Therefore, a position-based visual servoing deems more appropriate for precision control. Image information collected from a ground object, with known geometry a priori, is used to calculate the desired pose of the camera and correspondingly the desired joint angles of the model helicopter. To assure a smooth servoing, the task error is parameterized, using the information obtained from the linearaized image Jacobian, and time scaled to form a moving reference trajectory. At the higher level, a Linear Quadratic Regulator (LQR), augmented with a feed-forward term and an integrator, is used to track this trajectory. The discretization of the reference trajectory is achieved by an error-clamping strategy for optimal performance. The proposed technique was tested on a 2-dof model helicopter capable of pitch and yaw maneuvers carrying a light-weight off-the-shelf video camera. The test results show that the optimized controller can servo the model helicopter to a hovering pose for an image acquisition rate of as low as 2 frames per second.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhifang Wang ◽  
Jianguo Yu ◽  
Shangjing Lin ◽  
Junguo Dong ◽  
Zheng Yu

Purpose The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the system to distribute to solve the problem of control and communication failure at the same time. Design/methodology/approach In the paper, the authors propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network-integrated system. Findings The results show that the integrated system has good robustness and fault tolerance performance indicators for flight control and wireless signal transmission when confronted with external disturbances, internal actuator failures and wireless network associated failures and the flight control curve of the quadrotor unmanned aerial vehicle (UAV) is generally smooth and stable, even if it encounters external disturbances and actuator failures, its fault tolerance performance is very good. Then in the range of 400–800 m wireless communication distance, the success rate of wireless signal loop transmission is stable at 80%–100% and the performance is at least relatively improved by 158.823%. Originality/value This paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, based on the robust fault-tolerant control algorithm, the authors propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the system and through the Riccati equation and linear matrix inequation method, the designed distributed robust H∞ adaptive fault-tolerant controller further optimizes the fault suppression factor γ, so as to break through the limitation of only one Lyapunov matrix for different fault modes to distribute to solve the problem of control and communication failure at the same time.


Author(s):  
Y Ochi

The loss of an aircraft's primary flight controls can lead to a fatal accident. However, if the engine thrust is available, controllability and safety can be retained. This article describes flight control using engine thrust only when an aircraft has lost all primary flight controls. This is a kind of flight control reconfiguration. For safe return, the aircraft must first descend to a landing area, decelerate to a landing speed, and then be capable of precise flight control for approach and landing. For these purposes, two kinds of controllers are required: a controller for descent and deceleration and a controller for approach and landing. The former controller is designed for longitudinal motion using a model-following control method, based on a linear quadratic regulator. The latter is designed by an H∞ state-feedback control method for both longitudinal and lateral-directional motions. Computer simulation is conducted using linear models of the Boeing 747. The results indicate that flight path control, including approach and landing, is possible using thrust only; however, speed control proves more difficult. However, if the horizontal stabilizer is available, the airspeed can be reduced to a safe landing speed.


2019 ◽  
Vol 91 (7) ◽  
pp. 1018-1026
Author(s):  
Vinicius Piro Barragam ◽  
Andre Fenili ◽  
Ijar Milagre da Fonseca

Purpose The purpose of this paper is the dynamic analysis of the coupled rotation and vibration motion of a system containing a central rigid body to which is attached a flexible beam. Design/methodology/approach The methodology includes the Lagrange’s formulation by using the extended Hamilton’s Principle in conjunction with the assumed modes method to describe the system of equations by ordinary differential equations. The first unconstrained mode of vibration was considered as the solution for the transversal displacement. Such mode emerges as the eigenvalue problem solution associated to the dynamics of the system. The control strategy adopted is a nonlinear analogy of the linear quadratic regulator problem as the Riccati equation is solved at every integration step during the numerical solutions. This strategy is known as state-dependent Riccati equation. Findings By means of computational simulations, it was found the relation between controlled motion and inertia ratio. Research limitations/implications This work is limited to planar case and fixed hub. Practical implications Practical implications of this work realize the design of lighter yet dexterous structures. Originality/value The contribution of this paper is the position and vibration control of a flexible beam accounting for nonlinearity effects and the fact that the structure to where it is clamped has a comparable inertia.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xianyi Xie ◽  
Lisheng Jin ◽  
Guo Baicang ◽  
Jian Shi

Purpose This study aims to propose an improved linear quadratic regulator (LQR) based on the adjusting weight coefficient, which is used to improve the performance of the vehicle direct yaw moment control (DYC) system. Design/methodology/approach After analyzing the responses of the side-slip angle and the yaw rate of the vehicle when driving under different road adhesion coefficients, the genetic algorithm and fuzzy logic theory were applied to design the parameter regulator for an improved LQR. This parameter regulator works according to the changes in the road adhesion coefficient between the tires and the road. Hardware-in-the-loop (HiL) tests with double-lane changes under low and high road surface adhesion coefficients were carried out. Findings The HiL test results demonstrate the proposed controllers’ effectiveness and reasonableness and satisfy the real-time requirement. The effectiveness of the proposed controller was also proven using the vehicle-handling stability objective evaluation method. Originality/value The objective evaluation results reveal better performance using the improved LQR DYC controller than a front wheel steering vehicle, especially in reducing driver fatigue, improving vehicle-handling stability and enhancing driving safety.


Sign in / Sign up

Export Citation Format

Share Document