Modelling of the reference STARs procedures in the context of RPAS integration in non-segregated airspace

2020 ◽  
Vol 92 (9) ◽  
pp. 1385-1392
Author(s):  
Daniel Lichoń

Purpose This work presents the part of the research in the integration of the remotely piloted aircraft systems (RPAS) in non-segregated airspace. The purpose of this study is to elaborate the reference shape of the Standard Instrument Arrivals (STARs) procedures of controlled airports. The STARs parameters are unique for the aerodromes and depend on navigational aids (NAVAIDs), manoeuvres and aircraft categories. Therefore, the elaboration of reference shapes was advisable in the context of RPAS integration research. Design/methodology/approach The models were based on the procedure design guidelines by International Civil Aviation Organization. The statistics of existing STARs were prepared using Aeronautical Information Publications to determine the representative procedural parameters. Construction of procedural shapes required to define the nominal flight path and tolerance areas. Findings In statistics, the standard deviation of distances was below the determined reference mean values, thus the models were convergent with existing procedures. Research limitations/implications The modelling was limited to initial, intermediate, final and missed approach segments. Arrival segment was not modelled. NAVAIDs include Instrument Landing System Category 1 (in final and missed approach) and very high-frequency omni-directional ranging or global navigation satellite systems (in initial and intermediate approach segments). Practical implications Prepared models may be used in research in the integration of the new types of aerial vehicles in existing air traffic management systems. Originality/value The reference STARs possess commonly used procedural manoeuvres (straight-in, turn, racetrack and base turn) and different NAVAIDs. The parameters of approach segments were determined as representative of the existing procedures. Moreover, the models are suitable to place at arbitrary origin and runway axis bearing.

2019 ◽  
Vol 72 (5) ◽  
pp. 1140-1158
Author(s):  
Busyairah Syd Ali ◽  
Nur Asheila Taib

In Air Traffic Control (ATC), aircraft altitude data is used to keep an aircraft within a specified minimum distance vertically from other aircraft, terrain and obstacles to reduce the risk of collision. Two types of altitude data are downlinked by radar; actual flight level (Mode C) and selected altitude (Mode S). Flight level indicates pressure altitude, also known as barometric altitude used by controllers for aircraft vertical separation. ‘Selected altitude’ presents intent only, and hence cannot be used for separation purposes. The emergence of Global Navigation Satellite Systems (GNSSs) has enabled geometric altitude on board and to the controllers via the Automatic Dependent Surveillance-Broadcast (ADS-B) system. In addition, ADS-B provides quality indicator parameters for both geometric and barometric altitudes. Availability of this information will enhance Air Traffic Management (ATM) safety. For example, incidents due to Altimetry System Error (ASE) may potentially be avoided with this information. This work investigates the use and availability of these parameters and studies the characteristics of geometric and barometric data and other data that complement the use of these altitude data in the ADS-B messages. Findings show that only 8·7% of the altitude deviation is < 245 feet (which is a requirement of the International Civil Aviation Organization (ICAO) to operate in Reduced Vertical Separation Minimum (RVSM) airspace). This work provides an alert/guidance for future ground or airborne applications that may utilise geometric/barometric altitude data from ADS-B, to include safety barriers that can be found or analysed from the ADS-B messages itself to ensure ATM safety.


Aviation ◽  
2018 ◽  
Vol 22 (1) ◽  
pp. 24-30
Author(s):  
Dimov Stojce Ilcev

In this paper is introduced the first proposal for development of Global Aeronautical Distress and Safety System (GADSS) in 1999 by the author of this article. The GADSS is de facto the integration of space (radio and satellite) Communication, Navigation and Surveillance (CNS) with Tracking, Detecting and Search and Rescue (SAR) systems, which have to provide airmen with global communications and locating networks. The GPS, GLONASS and other Global Navigation Satellite Systems (GNSS) provide precise positioning data for vessels, land vehicles and aircraft, but modern CNS demands need for enhanced services and augmentation of GNSS networks. Both networks have to be integrated under an GADSS umbrella with elements capable of being operated by any individual onboard aircraft to ensure prompt distress alert for SAR procedure. The enhanced concept of GADSS is that SAR authorities ashore and ships in the immediate vicinity of the aircraft in distress have to be rapidly alerted via radio and satellite communication systems and to assist in a coordinated SAR operations with the minimum of delay. In 2016, 16 years in delay, the International Civil Aviation Organization (ICAO) has begun its process to amend international standards and recommended practices to align with GADSS concept. This paper will also introduce the necessary networks and equipment, which has to ensure harmonized and enhanced maritime and aeronautical global SAR systems.


Subject The maritime security of global navigation satellite systems. Significance Global Navigation Satellite Systems (GNSSs) are critical to the safe and efficient operation of maritime transport, yet civilian GNSSs have little security. This has been highlighted most recently during tensions over ships passing the Strait of Hormuz, in which Iran allegedly tampered with GNSS signals to seize vessels. Impacts EU-based operators will have the advantage of access to the Galileo protected modes when launched. Developers of future GNSSs will face calls to include civilian secure modes. Secure civilian modes have cost implications for the shipping sector.


Subject Domestic governance of GNSS. Significance The growing use of location data generated by global navigation satellite systems (GNSS) has implications for personal privacy, civil liberties and public safety. Cases involving its use and abuse have already gained national prominence in several jurisdictions, but most issues remain unresolved. Impacts Providers of products and services that use GNSS will face new requirements to ensure safety and privacy. Demand for illegal jammers will rise as more items are fitted with location trackers as a security feature. International standards will emerge for commercial applications.


2007 ◽  
Vol 60 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Noppadol Pringvanich ◽  
Chalermchon Satirapod

This paper discusses the preliminary performance analysis result of the Asia-Pacific Global Navigation Satellite Systems (GNSS) Test Bed. Currently, seven Asia-Pacific economies are participating in the Test Bed project, namely Australia, Chinese Taipei, Indonesia, Malaysia, the Philippines, Thailand and Vietnam. The Test Bed was commissioned in May 2006. The discussion topics in this paper include Test Bed system architecture and preliminary analysis of the system performance. As presented in this paper, while current Satellite-Based Augmentation System (SBAS) algorithms can improve the accuracy performance of GPS positioning results, it cannot fulfill the integrity performance required by civil aviation community. This paper analyzes the limitation of the algorithm and proposes future research topics related to the limitation.


2020 ◽  
Author(s):  
Jean-Marie Chevalier ◽  
Nicolas Bergeot ◽  
Pascale Defraigne ◽  
Christophe Marque ◽  
Elisa Pinat

&lt;p&gt;Intense solar radio bursts (SRBs) emitted at L-band frequencies are a source of radio frequency interference for Global Navigation Satellite Systems (GNSS) by inducing a noise increase in GNSS measurements, and hence degrading the carrier-to-noise density (C/N&lt;sub&gt;0&lt;/sub&gt;). Such space weather events are critical for GNSS-based applications requiring real-time high-precision positioning.&lt;/p&gt;&lt;p&gt;Since 2015, the Royal Observatory of Belgium (ROB) monitors in near real-time the C/N&lt;sub&gt;0&lt;/sub&gt; observations from the European Permanent Network (EPN). The monitoring allows to detect accurately the general fades of C/N&lt;sub&gt;0&lt;/sub&gt; due to SRBs over Europe as from 1 dB-Hz. It provides in near real-time a quantification of the GNSS signal reception fade for the L1 C/A and L2 P(Y) signals and notifies civilian single and double frequency users with a 4-level index corresponding to the potential impact on their applications. This service is part of the real-time monitoring service of the PECASUS project of the International Civil Aviation Organization (ICAO) which started end of 2019.&lt;/p&gt;&lt;p&gt;Results of this 5-year monitoring will be discussed, including the 3 SRBs of 2015 and 2017, together with the new developments toward a global index using the International GNSS Service (IGS) network. In addition, we will show how the SRB monitoring is sometimes interfered by GPS flex power campaigns on the satellites from blocks IIR-M and IIF, and how it is mitigated . The routine and transient GPS flex power campaigns will be presented in terms of C/N&lt;sub&gt;0&lt;/sub&gt; variations for the EPN and IGS networks.&lt;/p&gt;


2014 ◽  
Vol 67 (4) ◽  
pp. 617-631 ◽  
Author(s):  
Peter Brooker

NextGen and SESAR have now been under development for several years, but have increasingly complex engineering and operational specifications. A variant Air Traffic Management (ATM) concept is sketched for generating fuel-efficient, very accurate and air-ground synchronized 4D-trajectories by using flight segment groundspeed profiles and linking Global Navigation Satellite Systems (GNSS) data to the aircraft Flight Management Systems (FMS) with feedback control. Is this a flawed concept or a feasible and operationally practical proposition?


Sensor Review ◽  
2019 ◽  
Vol 39 (3) ◽  
pp. 407-416
Author(s):  
Qimin Xu ◽  
Rong Jiang

Purpose This paper aims to propose a 3D-map aided tightly coupled positioning solution for land vehicles to reduce the errors caused by non-line-of-sight (NLOS) and multipath interference in urban canyons. Design/methodology/approach First, a simple but efficient 3D-map is created by adding the building height information to the existing 2D-map. Then, through a designed effective satellite selection method, the distinct NLOS pseudo-range measurements can be excluded. Further, an enhanced extended Kalman particle filter algorithm is proposed to fuse the information from dual-constellation Global Navigation Satellite Systems and reduced inertial sensor system. The dependable degree of each selected satellite is adjusted through fuzzy logic to further mitigate the effect of misjudged LOS and multipath. Findings The proposed solution can improve positioning accuracy in urban canyons. The experimental results evaluate the effectiveness of the proposed solution and indicate that the proposed solution outperforms all the compared counterparts. Originality/value The effect of NLOS and multipath is addressed from both the observation level and fusion level. To the authors’ knowledge, mitigating the effect of misjudged LOS and multipath in the fusion algorithm of tightly coupled integration is seldom considered in existing literature.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4085
Author(s):  
Mario Nicola ◽  
Gianluca Falco ◽  
Ruben Morales Ferre ◽  
Elena-Simona Lohan ◽  
Alberto de la Fuente ◽  
...  

Nowadays, the Global Navigation Satellite Systems (GNSS) technology is not the primary means of navigation for civil aviation and Air Traffic Control, but its role is increasing. Consequently, the vulnerabilities of GNSSs to Radio Frequency Interference, including the dangerous intentional sources of interference (i.e., jamming and spoofing), raise concerns and special attention also in the aviation field. This panorama urges for figuring out effective solutions able to cope with GNSS interference and preserve safety of operations. In the frame of a Single European Sky Air traffic management Research (SESAR) Exploratory Research initiative, a novel, effective, and affordable concept of GNSS interference management for civil aviation has been developed. This new interference management concept is able to raise early warnings to the on-board navigation system about the detection of interfering signals and their classification, and then to estimate the Direction of Arrival (DoA) of the source of interference allowing the adoption of appropriate countermeasures against the individuated source. This paper describes the interference management concept and presents the on-field tests which allowed for assessing the reached level of performance and confirmed the applicability of this approach to the aviation applications.


Sign in / Sign up

Export Citation Format

Share Document