Creep feed grinding wheels combine high performance with long life

2016 ◽  
Vol 106 (03) ◽  
pp. 181-186
Author(s):  
E. Prof. Uhlmann ◽  
N. Schröer

Die Herstellung von Spannuten an Schaftwerkzeugen erfolgt in den meisten Fällen über Schleifprozesse. Dabei kommen bei der Fertigung von Hartmetallwerkzeugen Diamantschleifscheiben verschiedener Bindungsspezifikationen zum Einsatz. Neuartige Hybridbindungen versprechen Vorteile gegenüber den konventionellen Bindungen. In umfangreichen Untersuchungen wurden verschiedene Bindungsspezifikationen bezüglich der Prozesskenngrößen und des Arbeitsergebnisses untersucht und gegenübergestellt.   The production of flutes at end mills is often carried out by creep feed grinding processes. During the manufacturing of cemented carbide tools diamond grinding wheels with different bonding specifications are used. Novel hybrid bonding grinding wheels promise advantages compared to conventional bonds. During extensive investigations different bonding specifications are analyzed and compared concerning their process parameters and the work result.


2022 ◽  
Vol 16 (1) ◽  
pp. 5-11
Author(s):  
Masakazu Fujimoto ◽  
Keisuke Shimizu ◽  
◽  

This paper deals with the microscopic wear characteristics of ceramic (Seeded Gel, SG) grinding wheels used in creep feed grinding. Creep feed grinding experiments with SG grinding wheels were carried out compared to rose-pink alumina (RA) grinding wheels. To clear the wear characteristics of the wheel working surface in creep feed grinding, changes in the shapes of grain cutting edges were observed by a field emission-scanning electron microscope (FE-SEM). This is a self-sharpening phenomenon based on micro fractures generated on the top of SG grain cutting edges. On the other hand, large fracture and attritious wear effected RA grain cutting edges. In addition, the features of any grain cutting edges were evaluated using attritious wear flat percentage. Changes in attritious wear flat percentage of SG grits maintained constant value and were stable. From these results, the influence of wear mode of the grinding wheel on grinding characteristics parameter, such as grinding force and workpiece surface roughness, is understood.


2022 ◽  
Vol 16 (1) ◽  
pp. 3-4
Author(s):  
Takazo Yamada ◽  
Kazuhito Ohashi ◽  
Hirofumi Suzuki ◽  
Akinori Yui

Demand for the high-precision and high-efficiency machining of hard ceramics, such as silicon carbide for semiconductors and hardened steel for molding dies, has significantly increased for optical and medical devices as well as for powered devices in automobiles. Certain types of hard metals can be machined by deterministic precision-cutting processes. However, hard and brittle ceramics, hardened steel for molds, and semiconductor materials have to be machined using precision abrasive technologies, such as grinding, polishing, and ultrasonic vibration technologies that use diamond super abrasives. The machining of high-precision components and their molds/dies using abrasive processes is very difficult due to their complex and nondeterministic natures as well as their complex textured surfaces. Furthermore, the development of new cutting-edge tools or machining methods and the active use of physicochemical phenomena are key to the development of high-precision and high-efficiency machining. This special issue features 11 research papers on the most recent advances in precision abrasive technologies. These papers cover the following topics: - Characteristics of abrasive grains in creep-feed grinding - Quantitative evaluation of the surface profiles of grinding wheels - ELID grinding using elastic wheels - Nano-topographies of ground surfaces - Novel grinding wheels - Grinding characteristics of turbine blade materials - Polishing mechanisms - Polishing technologies using magnetic fluid slurries - Application of ultrasonic vibration machining - Turning and rotary cutting technologies This issue is expected to help its readers to understand recent developments in abrasive technologies and to lead to further research. We deeply appreciate the careful work of all the authors, and we thank the reviewers for their incisive efforts.


Author(s):  
Jiaqiang Dang ◽  
Heng Zang ◽  
Qinglong An ◽  
Weiwei Ming ◽  
Ming Chen

2021 ◽  
pp. 161007
Author(s):  
Xin Zhang ◽  
Haixin Chen ◽  
Hui Chen ◽  
Senlin Li ◽  
Yurong Zhang ◽  
...  

1995 ◽  
Vol 117 (1) ◽  
pp. 55-61 ◽  
Author(s):  
C. Guo ◽  
S. Malkin

An analysis is presented for the fraction of the energy transported as heat to the workpiece during grinding. The abrasive grains and grinding fluid in the wheel pores are considered as a thermal composite which moves relative to the grinding zone at the wheel speed. The energy partition fraction to the workpiece is modeled by setting the temperature of the workpiece surface equal to that of the composite surface at every point along the grinding zone, which allows variation of the energy partition along the grinding zone. Analytical results indicate that the energy partition fraction to the workpiece is approximately constant along the grinding zone for regular down grinding, but varies greatly along the grinding zone for regular up grinding and both up and down creep-feed grinding. The resulting temperature distributions have important implications for selecting up versus down grinding especially for creep-feed operations.


Sign in / Sign up

Export Citation Format

Share Document