A novel way of parameter estimation of solar photovoltaic system

Author(s):  
Rahul Bisht ◽  
Afzal Sikander

Purpose This paper aims to achieve accurate maximum power from solar photovoltaic (PV), its five parameters need to be estimated. This study proposes a novel optimization technique for parameter estimation of solar PV. Design/methodology/approach To extract optimal parameters of solar PV new optimization technique based on the Jellyfish search optimizer (JSO). The objective function is defined based on two unknown variables and the proposed technique is used to estimate the two unknown variables and the rest three unknown variables are estimated analytically. Findings In this paper, JSO is used to estimate the parameters of a single diode PV model. In this study, eight different PV panels are considered. In addition, various performance indices, such as PV characteristics, such as power-voltage and current-voltage curves, relative error (RE), root mean square error (RMSE), mean absolute error (MAE) and normalized mean absolute error (NMAE) are determined using the proposed algorithm and existing algorithms. The results for different solar panels have been obtained under varying environmental conditions such as changing temperature and constant irradiance or changing irradiance and constant temperature. Originality/value The proposed technique is new and provides better results with minimum RE, RMSE, NMAE, MAE and converges fast, as depicted by the fitness graph presented in this paper.

2018 ◽  
Vol 1 (2) ◽  
pp. 153
Author(s):  
Anita Rizal

<p>The objective of this paper is to find out key factors influencing target market of solar photovoltaic industry; and identify ways on how to reduce cost of sales in solar photovoltaic industry in Nepal. It also analyzes better ways of marketing solar photovoltaic system in current market. The conceptual model taken for this study comprises of Porter’s (1985) value chain analysis theory which has identified two sequences of activities i.e. primary and support activities. Exploratory research has been used where primary data is collected through structured questionnaire distributed among 120 individual sellers of solar photovoltaic system inside Kathmandu valley. The data collected are analyzed using SPSS 16.0 which is coded and tabulated by Microsoft Excel spreadsheet application.</p><p>The result of the analysis of the data shows that factors influencing value chain of solar PV industry are infrastructure (mostly furniture, workshop, showroom, capital and human resources in less number) needed to set up a company, imported from different countries, distribution channel, subsidy claim, marketing medium and after sales service. Few companies import huge quantity of solar related products. Most of the companies targeting direct customer don't claim subsidy directly rather they claim via other pre-qualified companies. Also these companies consider radio advertisement to reach customers at large rather than any other medium of marketing. These companies value warranty and repair &amp; maintenance services as an after sales service. Although few of the solar photovoltaic systems are manufactured in Nepal, they prefer to import these items rather than promote Nepal made products. Thus, these factors have created value from import to service to the customers.</p><p>Journal of Business and Social Sciences Research, Vol. 1, No. 2, pp. 153-168</p>


2020 ◽  
Vol 6 (10) ◽  
pp. 10-19
Author(s):  
Pawan Kumar Tiwari ◽  
Mrs. Madhu Upadhyay

Worldwide renewable energy resources, especially solar energy, are growing dramatically in view of energy shortage and environmental concerns. The main objective of this study the design of a solar photovoltaic system in MATLAB/SIMULINK environment so as to enhance its output capacity before its integration with the grid. And to stabilize and improve the active power output from the solar system by designing an efficient controller for the inverter for DC to AC conversion based on AI optimization technique. Enhance the system reliability and efficiency by integrating it with the grid via a transformer with the desired grid voltage and frequency and studying its performance at different loads. This work provides a comprehensive design and implementation of power regulatory per phase inverter with proposed differential evolutionary pulse regulation control. Finally the work is made efficiently integrating it with the grid. The designed system is also capable of feeding reactive power to the grid when required. The computational methodology of the proposed modulation technique is very easy and the technique can be applied to the multilevel inverter with any number of levels.


Subject The outlook for the solar photovoltaic sector in China. Significance The EU's decision last month to remove tariffs on imported Chinese solar panels follows a US move to increase tariffs. It also comes at a time when international prices for panels are falling in response to a reduction of subsides for the deployment of solar photovoltaic (PV) capacity in China. Impacts Falling prices will stimulate further installation of solar PV capacity across the world, especially in sunny regions. Chinese manufacturers will further expand their capacity both at home and abroad. Non-Chinese PV manufacturers will find their profits squeezed even further unless they are protected by import controls. The rate of deployment of new solar PV capacity within China will decline, but still remain substantial.


2014 ◽  
Vol 612 ◽  
pp. 71-76 ◽  
Author(s):  
Smita Pareek ◽  
Ratna Dahiya

The power generated by solar photovoltaic system depends on insolation, temperature and shading situation etc. These days’ solar PV arrays are mainly building integrated. Therefore PV array are often under partial shadow. The feature of these shadows can be either easy-to-predict (like neighbour’s chimney, nearby tree or neighbouring buildings) or difficult-to-predict (passing clouds, birds litter).Thus output power obtained by PV arrays decreases in a considerable manner. In this paper, output powers, currents and voltages for SP & TCT topologies are calculated for different patterns of easy-to-predict partial shading conditions on a 4×4 PV field.


Author(s):  
Nildia Mejias-Brizuela ◽  
Rosa Brión-González ◽  
Arturo Ramírez-Lugo ◽  
Eber Orozco-Guillén

We present the design of a prototype solar photovoltaic system interconnected to the electrical network based the Standard CONOCER Mexico EC 0586.01 with which students from Polytechnic Universities and other education institutes technological of renewable energy acquire the theoretical-practical knowledge of photovoltaic technology, for so that students professionals more competitive. The prototype is designed using SolidWorks® software, is design for small space by the dimensions that have and is easy transportation because it does not weigh. The implementation consist in connections between components and the corresponding connections to the electrical grid and determine the acceptance by users through questionnaires applied. The characterization consist in acquired real-time physical and electrics parameters by computational tool designed, the graphs of characteristic curves of solar panels as function of solar irradiance and graphics of energy production of the photovoltaic system. Finally the use of the electricity network to supply an electric demand not covered by the prototype of grid interconnected photovoltaic system.


2021 ◽  
Author(s):  
Pushpendra Arya

The paper is all about the cureent scenario of solar ov system in India it withdraw its adaptability and challenge and comprises of solution regarding barriers of Solar PV technology


Author(s):  
Haseeb Javed

The goal of this study is to provide a model and conceptual design for a prosumer campus microgrid that will help the university campus economically. The proposed model is based on solar PV installation at department rooftop for the campus of Muhammad Nawaz Sharif University of Engineering and Technology's in Multan, Pakistan. This study indicates that a 3,196-kW grid-connected solar photovoltaic system may generate enough electrical power to meet consumption, reducing grid reliance and minimizing energy from grid supply. This study also includes an economical and financial analysis of the proposed system based on various assumptions. PVSol Software was used to conduct a solar potential study and design of the site. Our study and analysis revealed that our suggested PV model can create 3,196.53 kWh of PV energy (DC), which is about 81.6 percent of the yearly consumption of our chosen site of 3,784.56 kWh.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anas Sani Maihulla ◽  
Ibrahim Yusuf ◽  
Muhammad Salihu Isa

PurposeSolar photovoltaic (PV) is commonly used as a renewable energy source to provide electrical power to customers. This research establishes a method for testing the performance reliability of large grid-connected PV power systems. Solar PV can turn unrestricted amounts of sunlight into energy without releasing carbon dioxide or other contaminants into the atmosphere. Because of these advantages, large-scale solar PV generation has been increasingly incorporated into power grids to meet energy demand. The capability of the installation and the position of the PV are the most important considerations for a utility company when installing solar PV generation in their system. Because of the unpredictability of sunlight, the amount of solar penetration in a device is generally restricted by reliability constraints. PV power systems are made up of five PV modules, with three of them needing to be operational at the same time. In other words, three out of five. Then there is a charge controller and a battery bank with three batteries, two of which must be consecutively be in operation. i.e. two out of three. Inverter and two distributors, all of which were involved at the same time. i.e. two out of two. In order to evaluate real-world grid-connected PV networks, state enumeration is used. To measure the reliability of PV systems, a collection of reliability indices has been created. Furthermore, detailed sensitivity tests are carried out to examine the effect of various factors on the efficiency of PV power systems. Every module's test results on a realistic 10-kW PV system. To see how the model works in practice, many scenarios are considered. Tables and graphs are used to show the findings.Design/methodology/approachThe system of first-order differential equations is formulated and solved using Laplace transforms using regenerative point techniques. Several scenarios were examined to determine the impact of the model under consideration. The calculations were done with Maple 13 software.FindingsThe authors get availability, reliability, mean time to failure (MTTF), MTTF sensitivity and gain feature in this research. To measure the reliability of PV systems, a collection of reliability indices has been created. Furthermore, detailed sensitivity tests are carried out to examine the effect of various factors on the efficiency of PV power systems.Originality/valueThis is the authors' original copy of the paper. Because of the importance of the study, the references are well-cited. Nothing from any previously published articles or textbooks has been withdrawn.


Sign in / Sign up

Export Citation Format

Share Document