Experimental and numerical investigations of dynamic strain ageing behaviour in solid solution treated Inconel 718 superalloy

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Run-Hua Song ◽  
Hai-Long Qin ◽  
Zhong-Nan Bi ◽  
Ji Zhang ◽  
Hai Chi ◽  
...  

Purpose The purpose of this paper is to systematically investigate the dynamic strain aging (DSA) effect in solid solution treated IN718 at different temperatures through experiments and simulations to gain an understanding of the inelastic deformation mechanisms. Design/methodology/approach In the present work, uniaxial tensile tests have been carried out in conjunction with finite element (FE) simulations to investigate the behaviour of the solid solution treated Inconel 718 superalloy at different temperatures and strain rates. Dynamic strain aging (DSA) effects, which manifested during the tests in the form of a negative strain rate sensitivity and stress serrations, are investigated. The most significant DSA effect occurs at 500°C and at a strain rate of 10–4 s-1. In a newly proposed rate-dependent constitutive formulation, the DSA model, proposed by McCormick, Kubin and Estrin, was introduced into slip-assisted solute hardening, and an activation energy-dependent exponential flow rule was adopted. Findings The observed negative strain rate sensitivity and stress serrations are well predicted by a 3 D FE. The FE results indicate that the equivalent plastic strain rate distribution in the specimen gauge length is as highly inhomogeneous as in the other materials exhibiting DSA effects such as aluminium and titanium alloy. During inelastic deformation, propagating high strain rate bands can be closely correlated to the stress serrations. Originality/value For the DSA effect in solid solution treated IN718, the existing researching mainly focuses on the mechanical properties experiment and microstructure observation. In this study, a constitutive formulation, combined with the DSA model, has been proposed, and the mechanical behaviors, including the DSA effect, have been well predicted by a finite element model.

Author(s):  
S. A. Brauer ◽  
W. R. Whittington ◽  
H. Rhee ◽  
P. G. Allison ◽  
D. E. Dickel ◽  
...  

The structure–property relationships of a vintage ASTM A7 steel is quantified in terms of stress state, temperature, and strain rate dependence. The microstructural stereology revealed primary phases to be 15.8% ± 2.6% pearlitic and 84.2% ± 2.6 ferritic with grain sizes of 13.3 μm ± 3.1 μm and 36.5 μm ± 7.0 μm, respectively. Manganese particle volume fractions represented 0.38–1.53% of the bulk material. Mechanical testing revealed a stress state dependence that showed a maximum strength increase of 85% from torsion to tension and a strain rate dependence that showed a maximum strength increase of 38% from 10−1 to 103 s−1at 20% strain. In tension, a negative strain rate sensitivity (nSRS) was observed in the quasi-static rate regime yet was positive when traversing from the quasi-static rates to high strain rates. Also, the A7 steel exhibited a significant ductility reduction as the temperature increased from ambient to 573 K (300 °C), which is uncommon for metals. The literature argues that dynamic strain aging (DSA) can induce the negative strain rate sensitivity and ductility reduction upon a temperature increase. Finally, a tension/compression stress asymmetry arises in this A7 steel, which can play a significant role since bending is prevalent in this ubiquitous structural material. Torsional softening was also observed for this A7 steel.


2000 ◽  
Vol 652 ◽  
Author(s):  
Sergey N. Rashkeev ◽  
Michael V. Glazov ◽  
Frédéric Barlat ◽  
Daniel J. Lege

ABSTRACTA method for construction of “processing windows” to avoid negative strain rate sensitivity and associated serrated flow in some aluminum alloys is described. The method is based on the amplitude Ginzburg-Landau (GL) equations and analysis of bifurcation diagrams. The mathematical technique developed in the present work was applied to a specific aluminum alloy, Al-0.4%Mg-0.2%Si considered earlier in the literature [1-3], and yielded good results in terms of predicting the negative strain rate sensitivity regions in the “strain rate “temperature” parameter space. Using the GL-analysis it was demonstrated that even though the instability area is located in the region of intermediate strain rates, a qualitative difference exists between the areas of (relatively) fast and (relatively) slow strain rates. In the first case the dynamic behavior of the system is supercritical, in the second case it is subcritical. The second case is highly undesirable because it causes a sudden onset of stable stress serrations that are difficult to suppress, while in the first case the development of instability is gradual and, consequently, more easily controllable.


Author(s):  
B. Bal ◽  
B. Gumus ◽  
D. Canadinc

A new multiscale modeling approach is proposed to predict the contributions of dynamic strain aging (DSA) and the resulting negative strain rate sensitivity (NSRS) on the unusual strain-hardening response of Hadfield steel (HS). Mechanical response of HS was obtained from monotonic and strain rate jump experiments under uniaxial tensile loading within the 10−4 to 10−1 s−1 strain rate range. Specifically, a unique strain-hardening model was proposed that incorporates the atomic-level local instabilities imposed upon by the pinning of dislocations by diffusing carbon atoms to the classical Voce hardening. The novelty of the current approach is the computation of the shear stress contribution imposed on arrested dislocations leading to DSA at the atomic level, which is then implemented to the overall strain-hardening rule at the microscopic level. The new model not only successfully predicts the role of DSA and the resulting NSRS on the macroscopic deformation response of HS but also opens the venue for accurately predicting the deformation response of rate-sensitive metallic materials under any given loading condition.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 126
Author(s):  
Shaoheng Sun ◽  
Zhiyong Xue

The dynamic tensile behavior of the twinning-induced plasticity (TWIP) steel with the vanadium carbide is investigated at different strain rates of 10−4, 10−3, 10−2 and 0.05 s−1. Microstructure characterization, carried out using back scatter electron diffraction (EBSD) and transmission electron microscopy (TEM), shows a homogeneous face center cubic structured matrix with uniformly dispersed vanadium carbide. The vanadium carbide is controlled by the aging temperature and time. The best comprehensive mechanical properties are achieved when the tested steel is aged at 550 °C for 5 h. With the increase of strain rate, the tensile strength and work hardening rate decrease, and the tested material shows negative strain rate sensitivity. This would be due to an increase in stacking fault energy caused by temperature rise by adiabatic heating, which must suppress the formation of twinning. On the other hand, the strain rate sensitivity is affected by dynamic strain aging (DSA). With the increase of strain rate, the DSA weakens, which causes negative strain rate sensitivity. The tensile strength and strain rate sensitivity value both increase first and then decrease with the increase of vanadium carbide size. This is because the tensile strength is mainly affected by the vanadium carbide. In addition to the vanadium carbide, the strain rate sensitivity is also affected by the amount of solute atom (V and C) during the dynamic strain aging process.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 339
Author(s):  
Xiang Wang ◽  
Zhi Qiang Ren ◽  
Wei Xiong ◽  
Si Nan Liu ◽  
Ying Liu ◽  
...  

The negative strain rate sensitivity (SRS) of metallic glasses is frequently observed. However, the physical essence involved is still not well understood. In the present work, small-angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM) reveal the strong structure heterogeneity at nanometer and tens of nanometer scales, respectively, in bulk metallic glass (BMG) Zr64.13Cu15.75Ni10.12Al10 subjected to fully confined compression processing. A transition of SRS of stress, from 0.012 in the as-cast specimen to −0.005 in compression processed specimen, was observed through nanoindentation. A qualitative formulation clarifies the critical role of internal stress induced by structural heterogeneity in this transition. It reveals the physical origin of this negative SRS frequently reported in structurally heterogeneous BMG alloys and its composites.


2021 ◽  
Vol 59 (1) ◽  
pp. 8-13
Author(s):  
Il-Hyun Kim ◽  
Myung-Ho Lee ◽  
Yang-Il Jung ◽  
Hyun-Gil Kim ◽  
Jae-Il Jang

The behavior of dynamic strain aging (DSA) in a Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr alloy strip was investigated at temperature ranges of 25–600 °C via a tensile test. The tensile test was performed at two different strain rates 8.33 × 10<sup>-5</sup> and 1.67 × 10<sup>-2</sup> s<sup>-1</sup>. The shear stress of the alloy strip revealed a linear dependency on the test temperature when the specimens were tested under a higher strain rate (1.67 × 10<sup>-2</sup> s<sup>-1</sup>). However, the linear relationship was broken due to DSA when the samples were deformed under a lower strain rate (8.33 × 10<sup>-5</sup> s<sup>-1</sup>). The discrepancy was most significant at 400 °C. The trend in DSA behavior was similar irrespective of the orientation of the samples, i.e., rolling direction (RD) or transverse direction (TD). However, the effect of DSA was larger in the TD samples than the RD samples. The phenomena were interpreted to the variation in work hardening exponents and strain rate sensitivity. The value of the exponent decreased from 0.14 to 0.08 along a RD and from 0.1 to 0.07 along a TD, respectively. However, the smallest value was observed at 400–500 °C irrespective of the specimen orientation, which is consistent with the DSA behavior. It is suggested that the DSA was caused by an interaction of moving dislocations with solute atoms typically oxygen.


Sign in / Sign up

Export Citation Format

Share Document