scholarly journals Large-scale dynamic and static simulations of complex-shaped granular materials using parallel three-dimensional discrete element method (DEM) on DoD supercomputers

2018 ◽  
Vol 35 (2) ◽  
pp. 1049-1084 ◽  
Author(s):  
Beichuan Yan ◽  
Richard Regueiro

Purpose The purpose of this paper is to extend complex-shaped discrete element method simulations from a few thousand particles to millions of particles by using parallel computing on department of defense (DoD) supercomputers and to study the mechanical response of particle assemblies composed of a large number of particles in engineering practice and laboratory tests. Design/methodology/approach Parallel algorithm is designed and implemented with advanced features such as link-block, border layer and migration layer, adaptive compute gridding technique and message passing interface (MPI) transmission of C++ objects and pointers, for high performance optimization; performance analyses are conducted across five orders of magnitude of simulation scale on multiple DoD supercomputers; and three full-scale simulations of sand pluviation, constrained collapse and particle shape effect are carried out to study mechanical response of particle assemblies. Findings The parallel algorithm and implementation exhibit high speedup and excellent scalability, communication time is a decreasing function of the number of compute nodes and optimal computational granularity for each simulation scale is given. Nearly 50 per cent of wall clock time is spent on rebound phenomenon at the top of particle assembly in dynamic simulation of sand gravitational pluviation. Numerous particles are necessary to capture the pattern and shape of particle assembly in collapse tests; preliminary comparison between sphere assembly and ellipsoid assembly indicates a significant influence of particle shape on kinematic, kinetic and static behavior of particle assemblies. Originality/value The high-performance parallel code enables the simulation of a wide range of dynamic and static laboratory and field tests in engineering applications that involve a large number of granular and geotechnical material grains, such as sand pluviation process, buried explosion in various soils, earth penetrator interaction with soil, influence of grain size, shape and gradation on packing density and shear strength and mechanical behavior under different gravity environments such as on the Moon and Mars.

2018 ◽  
Vol 35 (6) ◽  
pp. 2327-2348 ◽  
Author(s):  
Beichuan Yan ◽  
Richard Regueiro

Purpose This paper aims to present performance comparison between O(n2) and O(n) neighbor search algorithms, studies their effects for different particle shape complexity and computational granularity (CG) and investigates the influence on superlinear speedup of 3D discrete element method (DEM) for complex-shaped particles. In particular, it aims to answer the question: O(n2) or O(n) neighbor search algorithm, which performs better in parallel 3D DEM computational practice? Design/methodology/approach The O(n2) and O(n) neighbor search algorithms are carefully implemented in the code paraEllip3d, which is executed on the Department of Defense supercomputers across five orders of magnitude of simulation scale (2,500; 12,000; 150,000; 1 million and 10 million particles) to evaluate and compare the performance, using both strong and weak scaling measurements. Findings The more complex the particle shapes (from sphere to ellipsoid to poly-ellipsoid), the smaller the neighbor search fraction (NSF); and the lower is the CG, the smaller is the NSF. In both serial and parallel computing of complex-shaped 3D DEM, the O(n2) algorithm is inefficient at coarse CG; however, it executes faster than O(n) algorithm at fine CGs that are mostly used in computational practice to achieve the best performance. This means that O(n2) algorithm outperforms O(n) in parallel 3D DEM generally. Practical implications Taking for granted that O(n) outperforms O(n2) unconditionally, complex-shaped 3D DEM is a misconception commonly encountered in the computational engineering and science literature. Originality/value The paper clarifies that performance of O(n2) and O(n) neighbor search algorithms for complex-shaped 3D DEM is affected by particle shape complexity and CG. In particular, the O(n2) algorithm outperforms the O(n) algorithm in large-scale parallel 3D DEM simulations generally, even though this outperformance is counterintuitive.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saprativ Basu ◽  
Arijit Chakrabarty ◽  
Samik Nag ◽  
Kishore Behera ◽  
Brati Bandyopadhyay ◽  
...  

Purpose The dryer feed chute of the pellet plant plays an important role in the pelletizing process. The chute discharges sticky and moist iron ore fines (<1 mm) to the inline rotary dryer for further processing. Since the inception of the installation of the dryer feed chute, the poor flowability of the feed materials has caused severe problems such as blockages and excessive wear of chute liners. This leads to high maintenance costs and reduced lifetime of the liner materials. Constant housekeeping is needed for maintaining the chute and reliable operation. The purpose of this study is to redesign the dryer feed chute to overcome the above challenges. Design/methodology/approach The discrete element method (DEM) has been used to model the flow of cohesive materials through the transfer chute. Physical experiments have been performed to understand the most severe flow conditions. A DEM material model is also developed for replicating the worst-case material condition. After identifying the key problem areas, concept designs were proposed and simulated to assess the design improvements to increase the reliability of chute operation. Findings Flow simulations correlated well with the existing flow behavior of the iron ore fines inside the chute. The location of the problematic areas has been validated with that of the previously installed chute. Subsequently, design modifications have been proposed. This includes modification of deflector plate and change in slope and cross-section of the chute. DEM simulations and analysis were conducted after incorporating these design changes. A comparison in the average velocity of particle and force on chute wall shows a significant improvement using the proposed design. Originality/value Method to calibrate DEM material model was found to provide accurate prediction and modeling of the flow behavior of bulk material through the real transfer chute. DEM provided greater insight into the performance of the chute especially modeling cohesive materials. DEM is a valuable design tool to assist chute designers troubleshoot and verify chute designs. DEM provides a greater ability to model and assess chute wear. This technique can help in achieving a scientific understanding of the flow properties of bulk solids through transfer chute, hence eliminate challenges, ensuring reliable, uninterrupted and profitable plant operation. This paper strongly advocates the use of calibrated DEM methodology in designing bulk material handling equipment.


Author(s):  
Rajesh P. Nair ◽  
C. Lakshmana Rao

Discrete Element Method (DEM) is an explicit numerical scheme to model the mechanical response of solid and particulate media. In our paper, we are introducing Quadrilateral Discrete Element Method (QDEM) for the simulation of the separation of elements in fixed beam subjected to impact load. QDEM results are compared with other DEM results available in literature. Impact loads include two cases: (a) a half sine wave and (b) a penetrator hitting the fixed beam. Separation criteria used for the discrete elements is maximum principal stress failure criteria. In QDEM, convergence study for the response of fixed beam is obtained using MATLAB platform. Validation of quadrilateral elements in fixed beam is being carried out by comparing the results with empirical formula available in literature for the impact analysis.


2007 ◽  
Vol 2007.20 (0) ◽  
pp. 621-622
Author(s):  
Masatoshi AKASHI ◽  
Hiroshi MIO ◽  
Atsuko SHIMOSAKA ◽  
Yoshiyuki SHIRAKAWA ◽  
Jusuke HIDAKA ◽  
...  

SPE Journal ◽  
2017 ◽  
Vol 22 (02) ◽  
pp. 632-644 ◽  
Author(s):  
Fengshou Zhang ◽  
Haiyan Zhu ◽  
Hanguo Zhou ◽  
Jianchun Guo ◽  
Bo Huang

Summary In this paper, an integrated discrete-element-method (DEM)/computational-fluid-dynamics (CFD) numerical-modeling work flow is developed to model proppant embedment and fracture conductivity after hydraulic fracturing. Proppant with diameter from 0.15 to 0.83 mm was modeled as a frictional particle assembly, whereas shale formation was modeled as a bonded particle assembly by using the bonded-particle model in PFC3D (Itasca Consulting Group 2010). The mechanical interaction between proppant pack and shale formation during the process of fracture closing was first modeled with DEM. Then, fracture conductivity after the fracture closing was evaluated by modeling fluid flow through the proppant pack by use of DEM coupled with CFD. The numerical model was verified by laboratory fracture-conductivity experiment results and the Kozeny-Carman equation. The simulation results show that the fracture conductivity increases with the increase of proppant concentration or proppant size, and decreases with the increase of fracture-closing stress or degree of shale hydration; shale-hydration effect was confirmed to be the main reason for the large amount of proppant embedment.


2005 ◽  
Vol 128 (3) ◽  
pp. 439-444 ◽  
Author(s):  
Harald Kruggel-Emden ◽  
Siegmar Wirtz ◽  
Erdem Simsek ◽  
Viktor Scherer

The discrete element method can be used for modeling moving granular media in which heat and mass transport takes place. In this paper the concept of discrete element modeling with special emphasis on applicable force laws is introduced and the necessary equations for heat transport within particle assemblies are derived. Possible flow regimes in moving granular media are discussed. The developed discrete element model is applied to a new staged reforming process for biomass and waste utilization which employs a solid heat carrier. Results are presented for the flow regime and heat transport in substantial vessels of the process.


Sign in / Sign up

Export Citation Format

Share Document