Time-cost-quality-environmental impact trade-off resource-constrained project scheduling problem with DEA approach

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sayyid Ali Banihashemi ◽  
Mohammad Khalilzadeh

PurposeThe purpose of this paper is to evaluate project activities' efficiency in different execution modes for the optimization of time–cost-quality and environmental impacts trade-off problem.Design/methodology/approachThis paper presents a parallel Data Envelopment Analysis (DEA) method for evaluation of project activities with different execution modes to select the best execution mode and find a trade-off between objectives. Also, according to the nature of the project activities, outputs are categorized into desirable (quality) and undesirable (time, cost and environmental impacts) and analyzed based on the DEA model. In order to rank efficient execution modes, the ideal and anti-ideal virtual units method is used. The proposed model is implemented on a real case of a rural water supply construction project to demonstrate its validity.FindingsThe findings show that the use of the efficient execution mode in each activity leads to an optimal trade-off between the four project objectives (time, cost, quality and environmental impacts).Practical implicationsThis study help project managers and practitioners with choosing the most efficient execution modes of project activities taking time–cost-quality-environmental impacts into account.Originality/valueIn this paper, in addition to time and cost optimization of construction projects, quality factors and environmental impacts are considered. Further to the authors' knowledge, there is no method for evaluating project activities' efficiency. The efficiency of different activity modes is also evaluated for the first time to select the most efficient modes. This research can assist project managers with choosing the most appropriate execution modes for the activities to ultimately accomplish the project with the lowest time, cost and environmental impacts along with the highest quality.

Author(s):  
Sameh Monir El-Sayegh ◽  
Rana Al-Haj

Purpose The purpose of this paper is to propose a new framework for time–cost trade-off. The new framework provides the optimum time–cost value taking into account the float loss impact. Design/methodology/approach The stochastic framework uses Monte Carlo Simulation to calculate the effect of float loss on risk. This is later translated into an added cost to the trade-off problem. Five examples, from literature, are solved using the proposed framework to test the applicability of the developed framework. Findings The results confirmed the research hypothesis that the new optimum solution will be at a higher duration and cost but at a lower risk compared to traditional methods. The probabilities of finishing the project on time using the developed framework in all five cases were better than those using the classical deterministic optimization technique. Originality/value The objective of time–cost trade-off is to determine the optimum project duration corresponding to the minimum total cost. Time–cost trade-off techniques result in reducing the available float for noncritical activities and thus increasing the schedule risks. Existing deterministic optimization technique does not consider the impact of the float loss within the noncritical activities when the project duration is being crashed. The new framework allows project managers to exercise new trade-offs between time, cost and risk which will ultimately improve the chances of achieving project objectives.


2019 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tianqi Wang ◽  
Moatassem Abdallah ◽  
Caroline Clevenger ◽  
Shahryar Monghasemi

Purpose Achieving project objectives in constructionprojects such as time, cost and quality is a challenging task. Minimizing project cost often results in additional project duration and might jeopardize quality, and minimizing project duration often results in additional cost and might jeopardize quality. Also, increasing construction quality often results in additional cost and time. The purpose of this paper is to identify and analyze trade-offs among the project objectives of time, cost and quality. Design/methodology/approach The optimization model adopted a quantitative research method and is developed in two main steps formulation step that focuses on identifying model decision variables and formulating objective functions, and implementation step that executes the model computations using multi-objective optimization of Non-Dominated Sorting Genetic Algorithms to identify the aforementioned trade-offs, and codes the model using python. The model performance is verified and tested using a case study of construction project consisting of 20 activities. Findings The model was able to show practical and needed value for construction managers by identifying various trade-off solutions between the project objectives of time, cost and quality. For example, the model was able to identify the shortest project duration at 84 days while keeping cost under $440,000 and quality higher than 85 percent. However, with an additional budget of $20,000 (4.5 percent increase), the quality can be increased to 0.935 (8.5 percent improvement). Research limitations/implications The present research work is limited to project objectives of time, cost and quality. Future expansion of the model will focus on additional project objectives such as safety and sustainability. Furthermore, new optimization models can be developed for construction projects with repetitive nature such as roads, tunnels and high rise buildings. Practical implications The present model advances existing research in planning construction projects efficiently and achieving important project objectives. On the practical side, the optimization model will support the construction industry by allowing construction managers to identify the highest quality to deliver a construction project within specified budget and duration, lowest cost for specified duration and quality or shortest duration for specified budget and quality. Originality/value The present model introduces new and innovative method of increasing working hours per day and number of working days per shift while analyzing labor working efficiency and overtime rate to identify optimal trade-offs among important project objectives of time, cost and quality.


2019 ◽  
Vol 46 (7) ◽  
pp. 581-600 ◽  
Author(s):  
Bahaa Hussein ◽  
Osama Moselhi

This study introduces a newly developed method for optimized time-cost trade-off under uncertainty. It identifies the optimal execution mode for each project activity that results in minimizing the overall project cost and (or) duration while satisfying a specified joint confidence level of both time and cost. The method uses an evolutionary-based algorithm along with a design generator of experiments and blocking techniques. The developed method accounts for managerial flexibility towards the selection of execution modes. This accommodates experience-based judgement of project managers in this process. Hence, the second fold of the developed method is a completely randomized experiment module that depicts the main effect of changing an activity mode on the project total cost and overall duration. The method provides the decision-maker a guideline for making well-informed implementation strategies. The results obtained demonstrate benefits and accuracy of the developed method and its applicability for large-scale projects.


2018 ◽  
Vol 25 (5) ◽  
pp. 623-638 ◽  
Author(s):  
Duc Hoc Tran ◽  
Luong Duc Long

PurposeAs often in project scheduling, when the project duration is shortened to reduce total cost, the total float is lost resulting in more critical or nearly critical activities. This, in turn, results in reducing the probability of completing the project on time and increases the risk of schedule delays. The objective of project management is to complete the scope of work on time, within budget in a safe fashion of risk to maximize overall project success. The purpose of this paper is to present an effective algorithm, named as adaptive multiple objective differential evolution (DE) for project scheduling with time, cost and risk trade-off (AMODE-TCR).Design/methodology/approachIn this paper, a multi-objective optimization model for project scheduling is developed using DE algorithm. The AMODE modifies a population-based search procedure by using adaptive mutation strategy to prevent the optimization process from becoming a purely random or a purely greedy search. An elite archiving scheme is adopted to store elite solutions and by aptly using members of the archive to direct further search.FindingsA numerical construction project case study demonstrates the ability of AMODE in generating non-dominated solutions to assist project managers to select an appropriate plan to optimize TCR problem, which is an operation that is typically difficult and time-consuming. Comparisons between the AMODE and currently widely used multiple objective algorithms verify the efficiency and effectiveness of the developed algorithm. The proposed model is expected to help project managers and decision makers in successfully completing the project on time and reduced risk by utilizing the available information and resources.Originality/valueThe paper presented a novel model that has three main contributions: First, this paper presents an effective and efficient adaptive multiple objective algorithms named as AMODE for producing optimized schedules considering time, cost and risk simultaneously. Second, the study introduces the effect of total float loss and resource control in order to enhance the schedule flexibility and reduce the risk of project delays. Third, the proposed model is capable of operating automatically without any human intervention.


2020 ◽  
Vol 27 (9) ◽  
pp. 2287-2313 ◽  
Author(s):  
Duc Hoc Tran

PurposeProject managers work to ensure successful project completion within the shortest period and at the lowest cost. One of the main tasks of a project manager in the planning phase is to generate the project time–cost curve, and furthermore, to determine the most appropriate schedule for the construction process. Numerous existing time–cost tradeoff analysis models have focused on solving a simple project representation without regarding for typical activity and project characteristics. This study aims to present a novel approach called “multiple-objective social group optimization” (MOSGO) for optimizing time–cost decisions in generalized construction projects.Design/methodology/approachIn this paper, a novel MOGSO to mimic the time–cost tradeoff problem in generalized construction projects is proposed. The MOSGO has slightly modified the mechanism operation from the original algorithm to be a free-parameter algorithm and to enhance the exploring and exploiting balance in an optimization algorithm. The evidential reasoning technique is used to rank the global optimal obtained non-dominated solutions to help decision makers reach a single compromise solution.FindingsTwo case studies of real construction projects were investigated and the performance of MOSGO was compared to those of widely considered multiple-objective evolutionary algorithms. The comparison results indicated that the MOSGO approach is a powerful, efficient and effective tool in finding the time–cost curve. In addition, the multi-criteria decision-making approaches were applied to identify the best schedule for project implementation.Research limitations/implicationsAccordingly, the first major practical contribution of the present research is that it provides a tool for handling real-world construction projects by considering all types of construction project. The second important implication of this study derives from research finding on the hybridization multiple-objective and multi-criteria techniques to help project managers in facilitating the time–cost tradeoff (TCT) problems easily. The third implication stems from the wide-range application of the proposed model TCT.Practical implicationsThe model can be used in early stages of the construction process to help project managers in selecting an appropriate plan for whole project lifecycle.Social implicationsThe proposal model can be applied to multi-objective contexts in diversified fields. Moreover, the model is also a useful reference for future research.Originality/valueThis paper makes contributions to extant literature by: introducing a method for making TCT models applicable to actual projects by considering general activity precedence relations; developing a novel MOSGO algorithm to solving TCT problems in multi-objective context by a single simulation; and facilitating the TCT problems to project managers by using multi-criteria decision-making approaches.


2017 ◽  
Vol 30 (3) ◽  
pp. 400-453 ◽  
Author(s):  
Arthur Ahimbisibwe ◽  
Urs Daellenbach ◽  
Robert Y. Cavana

Purpose Aligning the project management methodology (PMM) to a particular project is considered to be essential for project success. Many outsourced software projects fail to deliver on time, budget or do not give value to the client due to inappropriate choice of a PMM. Despite the increasing range of available choices, project managers frequently fail to seriously consider their alternatives. They tend to narrowly tailor project categorization systems and categorization criterion is often not logically linked with project objectives. The purpose of this paper is to develop and test a contingency fit model comparing the differences between critical success factors (CSFs) for outsourced software development projects in the current context of traditional plan-based and agile methodologies. Design/methodology/approach A theoretical model and 54 hypotheses were developed from a literature review. An online Qualtrics survey was used to collect data to test the proposed model. The survey was administered to a large sample of senior software project managers and practitioners who were involved in international outsourced software development projects across the globe with 984 valid responses. Findings Results indicate that various CSFs differ significantly across agile and traditional plan-based methodologies, and in different ways for various project success measures. Research limitations/implications This study is cross-sectional in nature and data for all variables were obtained from the same sources, meaning that common method bias remains a potential threat. Further refinement of the instrument using different sources of data for variables and future replication using longitudinal approach is highly recommended. Practical implications Practical implications of these results suggest project managers should tailor PMMs according to various organizational, team, customer and project factors to reduce project failure rates. Originality/value Unlike previous studies this paper develops and empirically validates a contingency fit model comparing the differences between CSFs for outsourced software development projects in the context of PMMs.


2016 ◽  
Vol 23 (3) ◽  
pp. 265-282 ◽  
Author(s):  
Emad Elbeltagi ◽  
Mohammed Ammar ◽  
Haytham Sanad ◽  
Moustafa Kassab

Purpose – Developing an optimized project schedule that considers all decision criteria represents a challenge for project managers. The purpose of this paper is to provide a multi-objectives overall optimization model for project scheduling considering time, cost, resources, and cash flow. This development aims to overcome the limitations of optimizing each objective at once resulting of non-overall optimized schedule. Design/methodology/approach – In this paper, a multi-objectives overall optimization model for project scheduling is developed using particle swarm optimization with a new evolutionary strategy based on the compromise solution of the Pareto-front. This model optimizes the most important decisions that affect a given project including: time, cost, resources, and cash flow. The study assumes each activity has different execution methods accompanied by different time, cost, cost distribution pattern, and multiple resource utilization schemes. Findings – Applying the developed model to schedule a real-life case study project proves that the proposed model is valid in modeling real-life construction projects and gives important results for schedulers and project managers. The proposed model is expected to help construction managers and decision makers in successfully completing the project on time and reduced budget by utilizing the available information and resources. Originality/value – The paper presented a novel model that has four main characteristics: it produces an optimized schedule considering time, cost, resources, and cash flow simultaneously; it incorporates a powerful particle swarm optimization technique to search for the optimum schedule; it applies multi-objectives optimization rather than single-objective and it uses a unique Pareto-compromise solution to drive the fitness calculations of the evolutionary process.


2017 ◽  
Vol 47 (2) ◽  
pp. 154-171 ◽  
Author(s):  
Seyyed Mahdi Hosseini ◽  
Peyman Akhavan ◽  
Morteza Abbasi

Purpose This paper intends to propose an approach for formation of the R&D project teams, so that in addition to the selection of the most expert individuals, facilitates the knowledge sharing among people. Design/methodology/approach Mathematical modeling was used to formulate the problem of selecting appropriate members for the project team. As the problem was formulated as a bi-objective mixed integer nonlinear programming problem, it was initially transformed from nonlinear to linear problem, and then, the global criterion method was applied to convert the problem into a single-objective problem. To collect the data for exogenous variables, the measurement scales (their validity had been verified in previous research) were adopted. Findings The results of various tests for evaluating the proposed approach in the case study confirmed its effectiveness in selecting the appropriate members of the project team. Practical implications Using the proposed approach, R&D project managers will be able to select the most appropriate members for the project team and, while ensuring the achievement of project objectives, prevent the loss of knowledge gained in the project lifecycle. Originality/value This paper is the first attempt to provide an approach for sharing the knowledge gained by the project team members in the R&D projects.


Author(s):  
S. A. Banihashemi ◽  
Mohammad Khalilzadeh ◽  
A. Shahraki ◽  
M. Rostami Malkhalifeh ◽  
S. S. R. Ahmadizadeh

2020 ◽  
Vol 15 (3) ◽  
pp. 1187-1204
Author(s):  
Amin Mahmoudi ◽  
Saad Ahmed Javed

Purpose The study aims to introduce two new models of project scheduling by incorporating potential quality loss cost (PQLC) in time–cost tradeoff problems by overcoming the drawbacks of the existing Kim, Khang and Hwang (KKH) model. The proposed methods are named the Revised KKH-I (RKKH-I) and Revised KKH-II (RKKH-II) models for project scheduling. Design/methodology/approach The performance of the existing KKH model has been tested using a numerical example followed by the identification of the main shortcomings of the KKH method. Later, a concrete effort has been made to address its shortcomings while improving its performance significantly. The comparative analysis of the Revised KKH models with the original model has also been presented along with sensitivity analyses. Findings The study recognizes that the construct on which the original KKH method was built is important; however, certain drawbacks make it unable to consider PQLC in projects, thus making its practical use questionable. The comparative analysis of the proposed methodology with the original method demonstrated that the new models (RKHH-I and II) are more comprehensive and intelligent than the existing KKH model. Originality/value The comparative analysis of the original KKH model and its improved version reveals that the revised model is far more suitable for project scheduling. The study is important for project managers who recognize project scheduling being one of the key parameters associated with project management process, crucial to control every day during the management of projects.


Sign in / Sign up

Export Citation Format

Share Document