scholarly journals Antenna array design on flexible substrate for wireless power transfer

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Habeeba Khan ◽  
Sayyed Arif Ali ◽  
Mohd Wajid ◽  
Muhammad Shah Alam

PurposeIn this work, a microstrip antenna array for wireless power transfer (WPT) application is reported. The proposed 4 × 4 antenna array operating at 16 GHz is designed using a flexible Kapton polyimide substrate for a far-field charging unit (FFCU).Design/methodology/approachThe proposed antenna is designed using the transmission line model on a flexible Kapton polyimide substrate. The finite element method (FEM) is used to perform the full-wave electromagnetic analysis of the proposed design.FindingsThe antenna offers −10 dB bandwidth of 240 MHz with beam width and broadside gain found to be 29.4° and 16.38 dB, respectively. Also, a very low cross-polarization level of −34.23 dB is achieved with a radiation efficiency of 36.67%. The array is capable of scanning −15° to +15° in both the elevation and azimuth planes.Originality/valueThe radiation characteristics achieved suggest that the flexible substrate antenna is suitable for wireless charging purposes.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 415
Author(s):  
Haiyue Wang ◽  
Lianwen Deng ◽  
Heng Luo ◽  
Junsa Du ◽  
Daohan Zhou ◽  
...  

The microwave wireless power transfer (MWPT) technology has found a variety of applications in consumer electronics, medical implants and sensor networks. Here, instead of a magnetic resonant coupling wireless power transfer (MRCWPT) system, a novel MWPT system based on a frequency reconfigurable (covering the S-band and C-band) microstrip patch antenna array is proposed for the first time. By switching the bias voltage-dependent capacitance value of the varactor diode between the larger main microstrip patch and the smaller side microstrip patch, the working frequency band of the MWPT system can be switched between the S-band and the C-band. Specifically, the operated frequencies of the antenna array vary continuously within a wide range from 3.41 to 3.96 GHz and 5.7 to 6.3 GHz. For the adjustable range of frequencies, the return loss of the antenna array is less than −15 dB at the resonant frequency. The gain of the frequency reconfigurable antenna array is above 6 dBi at different working frequencies. Simulation results verified by experimental results have shown that power transfer efficiency (PTE) of the MWPT system stays above 20% at different frequencies. Also, when the antenna array works at the resonant frequency of 3.64 GHz, the PTE of the MWPT system is 25%, 20.5%, and 10.3% at the distances of 20 mm, 40 mm, and 80 mm, respectively. The MWPT system can be used to power the receiver at different frequencies, which has great application prospects and market demand opportunities.


Author(s):  
Mohammadali Mohammadi ◽  
Batu K. Chalise ◽  
Himal A. Suraweera ◽  
Hien Quoc Ngo ◽  
Zhiguo Ding

Author(s):  
Hugo Flores-Garcia ◽  
Deon Lucien ◽  
Tyler McPherson ◽  
Sungkyun Lim

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1732 ◽  
Author(s):  
Mohammad Haerinia ◽  
Sima Noghanian

In this work, a dual-band printed planar antenna, operating at two ultra-high frequency bands (2.5 GHz/4.5 GHz), is proposed for wireless power transfer for wearable applications. The receiving antenna is printed on a Kapton polyimide-based flexible substrate, and the transmitting antenna is on FR-4 substrate. The receiver antenna occupies 2.1 cm 2 area. Antennas were simulated using ANSYS HFSS software and the simulation results are compared with the measurement results.


Author(s):  
Manuele Bertoluzzo ◽  
Elisabetta Sieni

Purpose This paper aims to present an approach to the design of the compensation networks (CNs) based on a genetic optimization algorithm. The algorithm is applied to CNs with T-topology and considers the effects of the parasitic series resistances of their inductive components. The effectiveness of the algorithm is verified using Bode diagrams and simulation results. Design/methodology/approach The paper at first describes the problem and the approach followed to reach a set of optimal solutions, then explains the optimization algorithm, reports the obtained solutions and selects the optimal CNs. Finally, the actual performance of the wireless power transfer system (WPTS) when the selected CNs are used are checked. Findings This approach gave interesting results and made available a number of different sizing solutions of complex networks in a very short time. Most of the obtained solutions outperform the widely used series-series compensation. An accurate post processing of the obtained result is mandatory to discriminate the solutions that could be implemented from those that in a real system would originate uncontrolled high frequency current oscillation. Originality/value This paper offers a rather new approach to solve the problem of sizing the CNs of a dynamic WPTS. This approach makes available a large number of optimal solutions to the problem in a short time, without solving complex system of equations.


Author(s):  
Quandi Wang ◽  
Yingcong Wang ◽  
Jianwei Kang ◽  
Wanlu Li

Purpose The purpose of this paper is to present a monitoring method for a three-coil wireless power transfer (WPT) system, which consists of a transmitting coil (Tx), a relay coil and a movable receiving coil (Rx). Both an ideal resistance and a rectifier bridge load are taken into account. Design/methodology/approach From the perspective of fundamental component, the equivalent impedance of a rectifier bridge load is well analyzed. On the basis of the circuit model of a three-coil WPT, estimation equations of the variable mutual inductances and load condition are deduced. Multi-frequency input impedance obtained by frequency scans combined with the Newton-Raphson method are used to obtain solutions. Findings Experimental results indicate that the estimated parameter values are close to each other when different sets of source frequencies are applied. When compared with simulation results, these estimated parameters including both mutual inductances and load resistances are found to be accurate. Originality/value Using only the information of input side, the proposed algorithm can estimate the mutual inductances and load resistance regardless of the Rx positions. Estimation is feasible for the system with a rectifier bridge load. The estimated analysis will serve as a key step in load power stabilization for WPT systems.


Author(s):  
Sándor Bilicz ◽  
József Pávó ◽  
Szabolcs Gyimóthy ◽  
Zsolt Badics

Purpose The electromagnetic modeling of inductively coupled, resonant wireless power transfer (WPT) is dealt with. This paper aims to present a numerically efficient simulation method. Design/methodology/approach Recently, integral equation formulations have been proposed, using piecewise constant basis functions for the series expansion of the current along the coil wire. In the present work, this scheme is improved by introducing global basis functions. Findings The use of global basis functions provides a stronger numerical stability and a better control over the convergence of the simulation; moreover, the associated computational cost is lower than for the previous schemes. These advantages are demonstrated in numerical examples, with special attention to the achievable efficiency of the power transfer. Practical implications The method can be efficiently used, e.g., in the optimal design of resonant WPT systems. Originality/value The presented computation scheme is original in the sense that global series expansion has not been previously applied to the numerical simulation of resonant WPT.


Sign in / Sign up

Export Citation Format

Share Document