Transient mixed convection flow of nanofluids in a vertical tube

Author(s):  
Catalin Viorel Popa ◽  
Cong Tam Nguyen ◽  
Stéphane Fohanno ◽  
Guillaume Polidori

Purpose – In the present work, a theoretical model based on the full Navier-Stokes and energy equations for transient mixed convection in a vertical tube is extended to nanofluids with nanoparticle volume fraction up to 5 percent to ensure a Newtonian fluid behaviour. The paper aims to discuss these issues. Design/methodology/approach – The nanofluids considered, alumina/water and CuO/water, flow inside a vertical tube of circular cross-section, which is subjected to convective heat exchange at the outer surface. The transient regime is caused by a sudden change of nanofluid temperature at the tube inlet. The range of the Richardson number (1.6=Ri=2.5) investigated in this study corresponds to classic cases of mixed convection flow. Findings – Results have shown a significant reduction in the size of the recirculation zone near the wall when the particle volume fraction increases. This may be attributed to the viscosity increase with the volume fraction. Moreover, the flow structure clearly changes when the convective heat transfer coefficient is modified. A decrease of the wall temperature along the tube was found when increasing the convective heat transfer coefficient imposed at the tube external surface. Research limitations/implications – The problem formulation in 2D axisymmetric geometry includes the continuity, the Navier-Stokes and energy equations and is based on the stream function and vorticity; the numerical solution of equations is carried out using a finite difference method. Practical implications – From an economic point of view, this research paper is innovative in the sense that it considers nanofluids as a new and more efficient way to transfer heat. This paper could find applications for heat exchange purposes of compact systems with high thermal loads. Originality/value – Across the world, a still growing number of research teams are investigating nanofluids and their properties. Investigations concern several aspects such as the preparation of the nanofluids, as well as the applications of these nanofluids for convective heat transfer purposes. The dynamical study will consist in the instantaneous and spatial characterization of the dynamic flow field for different nanoparticle volume fractions.

2006 ◽  
Vol 129 (6) ◽  
pp. 697-704 ◽  
Author(s):  
A. G. Agwu Nnanna

This paper presents a systematic experimental method of studying the heat transfer behavior of buoyancy-driven nanofluids. The presence of nanoparticles in buoyancy-driven flows affects the thermophysical properties of the fluid and consequently alters the rate of heat transfer. The focus of this paper is to estimate the range of volume fractions that results in maximum thermal enhancement and the impact of volume fraction on Nusselt number. The test cell for the nanofluid is a two-dimensional rectangular enclosure with differentially heated vertical walls and adiabatic horizontal walls filled with 27 nm Al2O3–H2O nanofluid. Simulations were performed to measure the transient and steady-state thermal response of nanofluid to imposed isothermal condition. The volume fraction is varied between 0% and 8%. It is observed that the trend of the temporal and spatial evolution of temperature profile for the nanofluid mimics that of the carrier fluid. Hence, the behaviors of both fluids are similar. Results shows that for small volume fraction, 0.2⩽ϕ⩽2% the presence of the nanoparticles does not impede the free convective heat transfer, rather it augments the rate of heat transfer. However, for large volume fraction ϕ>2%, the convective heat transfer coefficient declines due to reduction in the Rayleigh number caused by increase in kinematic viscosity. Also, an empirical correlation for Nuϕ as a function of ϕ and Ra has been developed, and it is observed that the nanoparticle enhances heat transfer rate even at a small volume fraction.


Author(s):  
Konstantinos Stokos ◽  
Socrates Vrahliotis ◽  
Theodora Pappou ◽  
Sokrates Tsangaris

Purpose – The purpose of this paper is to present a numerical method for the simulation of steady and unsteady incompressible laminar flows, including convective heat transfer. Design/methodology/approach – A node centered, finite volume discretization technique is applied on hybrid meshes. The developed solver, is based on the artificial compressibility approach. Findings – A sufficient number of representative test cases have been examined for the validation of this numerical solver. A wide range of the various dimensionless parameters were applied for different working fluids, in order to estimate the general applicability of our solver. The obtained results agree well with those published by other researchers. The strongly coupled solution of the governing equations showed superiority compared to the loosely coupled solution as inviscid effects increase. Practical implications – Convective heat transfer is dominant in a wide variety of practical engineering problems, such as cooling of electronic chips, design of heat exchangers and fire simulation and suspension in tunnels. Originality/value – A comparison between the strongly coupled solution and the loosely coupled solution of the Navier-Stokes and energy equations is presented. A robust upwind scheme based on Roe’s approximate Riemann solver is proposed.


2008 ◽  
Vol 07 (06) ◽  
pp. 325-331 ◽  
Author(s):  
S. M. SOHEL MURSHED ◽  
KAI CHOONG LEONG ◽  
CHUN YANG ◽  
NAM-TRUNG NGUYEN

This paper reports an experimental investigation into force convective heat transfer of nanofluids flowing through a cylindrical minichannel under laminar flow and constant wall heat flux conditions. Sample nanofluids were prepared by dispersing different volumetric concentrations (0.2–0.8%) of nanoparticles in deionized water. The results showed that both the convective heat transfer coefficient and the Nusselt number of the nanofluid increase considerably with the nanoparticle volume fraction as well as the Reynolds number. Along with the enhanced thermal conductivity of nanofluids, the migration, interactions, and Brownian motion of nanoparticles and the resulting disturbance of the boundary layer are responsible for the observed enhancement of heat transfer coefficients of nanofluids.


2020 ◽  
Vol 50 (4) ◽  
pp. 321-327
Author(s):  
Md Insiat Islam Rabby ◽  
Farzad Hossain ◽  
S.A.M. Shafwat Amin ◽  
Tazeen Afrin Mumu ◽  
MD Ashraf Hossain Bhuiyan ◽  
...  

A numerical study of laminar forced convection heat transfer for the fully developed region inside a circular pipe filled with Si based nanoparticle is presented for investigating the parameters of heat transfer. Four Si based nanoparticles Si, SiC, SiO2, Si3N4 with 1-5% volume fraction have been mixed with water to prepare nanofluids which is used for working fluid to flow over a circular pipe with 5mm diameter and 700mm length. Heat transfer characteristics and pumping power have been calculated at fully developed region with constant heat flux condition on pipe wall to identify the heat transfer enhancement ratio and pumping power reduction ratio among base fluid water and each nanofluids. It is worth mentioning that utilizing SiC nanoparticle shows not only the highest increment of Nusselt number and convective heat transfer coefficient but also the highest decrement of pumping power requirement and FOM in comparison to the base fluid.


2015 ◽  
Vol 37 ◽  
pp. 141
Author(s):  
Farhad Vahidinia ◽  
Behrooz Keshtegar ◽  
Mohadeseh Miri

In this paper, the statistical analysis of the effect of nanoparticles volume fraction on one of the most important thermal characteristics turbulent flow of nanofluid i.e. convection heat transfer coefficient, inside a circular tube with uniform wall heat flux is investigated numerically. Also, water as a base fluid and Al2O3 as suspended particles with a diameter of 36 nm are considered. Heat transfer characteristics are computed using the solution of elliptic equations based on discrete the finite volume method and the second order upwind. The relationship between pressure and velocity using SIMPLEC algorithm is established. In this study, the variation of volume fraction of nanoparticles is assumed in the range of 0 to 6%. The best probability distribution function of the heat transfer parameters are selected using chi square test that various probability distribution such as: Gamma, Normal, Lognormal, Gumbel, and Frechet are evaluated based on numerical analysis of tube flow. After reviewing the results, it was found that with increasing volume fraction of nanoparticles, the convective heat transfer coefficient increases. On the other hand, the convective heat transfer coefficients with regard to variation of volume fraction of nanoparticles follow Gumbel Max probability distribution function.


2018 ◽  
Vol 19 (1) ◽  
pp. 251-269 ◽  
Author(s):  
Hossein Fatahian ◽  
Hesamoddin Salarian ◽  
Majid Eshagh Nimvari ◽  
Esmaeel Fatahian

The present study investigated the thermal effects of the use of nanoparticles in the fuel-oil and water-based fluids, as well as the numerical simulation of laminar flow of fuel-oil-alumina and the water-alumina nanofluids in a channel. A second order discretization method was used for solving equations and a SIMPLE algorithm was applied for pressure-velocity coupling using Fluent. Effect of nanoparticle volume fraction and particles size in different Reynolds numbers (900≤Re≤2100) on the convective heat transfer coefficient was studied. The simulation was conducted for three different volume fractions and particle sizes in the laminar flow under constant heat flux. The results showed that adding nanoparticles to the base fluid caused an increase in the thermal conductivity ratio of the fluid, which was observed to a greater degree in the fuel oil-alumina nanofluid than in the water-alumina nanofluid. The increase in nanoparticle volume fraction caused an increase in the convective heat transfer coefficient and the Nusselt number of the nanofluids. The significant point of this study was that in the same volume fraction, the effect of adding alumina nanoparticles to the fuel-oil-based fluid had more effect than adding these particles to water-based fluid, while the effect of increasing the Reynolds number in the water-alumina nanofluid on convective heat transfer coefficient was greater than the fuel-oil-alumina. Also, in the same Reynolds number and volume fraction with increasing size of nanoparticles, the value of the convective heat transfer coefficient was decreased. The results of this study can be used in refineries and petrochemical industries where the fuel-oil fluid flows in the channels. ABSTRAK: Kajian ini adalah bagi mengkaji kesan haba terhadap penggunaan bahan bakar-minyak dan cecair asas-air dalam nanopartikel, juga menjalankan simulasi pengiraan aliran laminar bahan bakar-minyak-alumina dan cecair-nano air-alumina dalam saluran. Kaedah berasingan kelas kedua telah digunakan bagi menyelesaikan persamaan dan algoritma SIMPLE telah diaplikasikan dalam gandingan kelajuan-tekanan menggunakan Fluent. Kesan jumlah pecahan nanopartikel dan pelbagai bilangan saiz zarah dalam bilangan Reynolds (900≤Re≤2100) pada pekali pemindahan haba perolakan telah dikaji. Simulasi telah dijalankan pada tiga pecahan isipadu berlainan dan pada zarah dalam aliran laminar dengan fluks haba tetap. Hasil kajian menunjukkan bahawa dengan penambahan nanopartikel dalam cecair-asas menyebabkan peningkatan nisbah daya pengaliran haba cecair pada cecair-nano bahan bakar-minyak-alumina melebihi daripada cecair-nano air-alumina. Penambahan pada pecahan isipadu nanopartikel ini menyebabkan peningkatan pada nilai pekali pemindahan haba perolakan dan bilangan Nusselt dalam cecair-nano. Perkara penting dalam kajian ini adalah pada pecahan isipadu sama, kesan penambahan nanopartikel alumina kepada cecair berasaskan minyak mempunyai kesan yang lebih besar daripada penambahan zarah-zarah ini kepada cecair berasaskan air. Pada masa sama, kesan peningkatan bilangan Reynolds dalam cecair-nano air-alumina pada pekali pemindahan haba perolakan lebih besar daripada kesan peningkatan bahan bakar-minyak-alumina. Selain itu, pada bilangan Reynolds yang sama dan dengan peningkatan saiz nanopartikel pecahan isipadu, nilai pekali pemindahan haba perolakan turut menurun. Hasil kajian ini boleh digunakan dalam industri penapisan dan petrokimia di mana bahan bakar cecair minyak mengalir dalam saluran.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fengxia Lu ◽  
Meng Wang ◽  
Weizhen Liu ◽  
Heyun Bao ◽  
Rupeng Zhu

Purpose This paper aims to propose a numerical method to calculate the convective heat transfer coefficient of spiral bevel gears under the condition of splash lubrication and to reveal the lubrication and temperature characteristics between the gears and the oil-air two-phase flow. Design/methodology/approach Based on computational fluid dynamics, the multiple reference frames (MRF) method was used to simulate the rotational characteristics of gears and the motions of their surrounding fluid. The lubrication and temperature characteristics of gears were studied by combining the MRF method with the volume of the fluid multiphase flow model. Findings The convective heat transfer coefficient can be improved by increasing the rotational speed and the oil immersion depth. Moreover, the temperature of the tooth surface having a large convective heat transfer coefficient is also found to be low. A large convection heat transfer coefficient could lead to a good cooling effect. Originality/value This method can be used to obtain the convective heat transfer coefficient values at different meshing positions, different radii and different tooth surface positions. It also can provide research methods for improving the cooling effect of gears under the condition of splash lubrication. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0233/


Author(s):  
A. G. Agwu Nnanna

The presence of nanoparticles in buoyancy-driven flows affects the thermophysical properties of the fluid and consequently alters the rate of heat transfer. The focus of this paper is to estimate the range of volume fractions that results in maximum thermal enhancement in buoyancy-driven nanofluids. In this study, a two-dimensional rectangular enclosure with isothermal vertical walls and adiabatic horizontal surface is filled with 27nm Al2O3 - H2O nanofluid. The volume fraction is varied between 0 to 12%. Results shows that for small volume fraction, 0.2≤Φ≤2%, the presence of the nanoparticles does not impede the free convective heat transfer, rather it augments the rate of heat transfer. However, for large volume fraction, Φ>2%, the convective heat transfer coefficient declines due to reduction in the Rayleigh number but the rate of thermal diffusion is enhanced.


2017 ◽  
Vol 69 (5) ◽  
pp. 673-677
Author(s):  
Ankit Kotia ◽  
Subrata Kumar Ghosh

Purpose The present work aims to numerically investigate the natural convective heat transfer performance of aluminium oxide (Al2O3)-gear oil nanolubricant used in heavy earth moving machinery (HEMM). Design/methodology/approach Viscosity, density and thermal conductivity of nanolubricants have been experimentally determined. The numerical simulation has been performed by using computational fluid dynamics (CFD) for a cylinder cavity which resembles shape of automatic transmission system of HEMM. The left wall temperature has been maintained at 293 to 313 K, and right wall is at a constant temperature of 283 K. Due to absence of any experimental study on natural convective heat transfer performance of Al2O3-gear oil nanolubricant, initially CFD model has been tested for accuracy by comparing experimental, and CFD results for Al2O3-water nanofluid has been available in open literature. Findings It has been observed that Nusselt number increases with increase in Rayleigh number, but it decreases with increasing particle volume fraction. The gear oil-based nanolubricant is expected to have the better thermal performance in HEMM at higher temperature. Practical implications The numerical analysis will help to predict the thermal performance of nanolubricant. The outcome may help the designers, researchers and manufacturers of HEMM. Originality/value Most of the previous studies have been limited with base fluid as water, ethylene glycol, etc. in the field of nanofluid. CFD study for thermal performance of Al2O3-gear oil nanolubricant is essential before the experimental work. This work is the preliminary stage of application of, nanolubricant for heat transfer.


Author(s):  
Jung-Yeul Jung ◽  
Hoo-Suk Oh ◽  
Ho-Young Kwak

Convective heat transfer coefficient and friction factor of a nanofluid in rectangular microchannel were measured. An integrated microsystem consisting of a single microchannel on one side and two localized heaters and five polysilicon temperature sensors along the channel on the other side were fabricated. Aluminum dioxide (Al2O3) nanofluids with various particle volume fractions were used in experiment to investigate the effect of the volume fraction of the nanoparticles to the convective heat transfer and fluid flow in microchannels. The convective heat transfer coefficient of the Al2O3 nanofluid in laminar flow regime was measured to be increased up to 15% compared to the distilled water at a volume fraction of 1.8 volume percent without major friction loss. The Nusselt number measured increases with increasing the Reynolds number in laminar flow regime. A new type of convective heat transfer correlation was proposed to correlate experimental data of heat transfer coefficient for nanofluids in microchannels.


Sign in / Sign up

Export Citation Format

Share Document