Effects of discrete heat source location on heat transfer and entropy generation of nanofluid in an open inclined L-shaped cavity

Author(s):  
Taher Armaghani ◽  
A.M. Rashad ◽  
Omid Vahidifar ◽  
S.R. Mishra ◽  
A.J. Chamkha

PurposeThis paper aims to concentrate on the impacts of a discrete heat source location on heat transfer and entropy generation for a Ag-water nanofluid in an open inclined L-shaped cavity.Design/methodology/approachThe governing partial differential equations for this study are computed by the finite volume method.FindingsThe results show that increasing the inclination angle leads to a rise in heat transfer. It is clear with the increase in the nanoparticles volume fraction that the thermal performance reduces, and it increases when the inclination angle increases.Originality/valueBecause of the continuous literature survey, the authors have not found a study that concentrates on the entropy generation in a wide variety of irregular ducts. Thus, in this paper, they present the analysis of entropy generation in an L-shaped duct experiencing a mixed convective flow with a nanofluid. The authors deal with this geometry because it is very useful in cooling systems of nuclear and chemical reactors and electronic components.

Author(s):  
M.A. Mansour ◽  
Sameh Elsayed Ahmed ◽  
Ali J. Chamkha

Purpose This paper aims to investigate the entropy generation due to magnetohydrodynamic natural convection flow and heat transfer in a porous enclosure filled with Cu-water nanofluid in the presence of viscous dissipation effect. The left and right walls of the cavity are thermally insulated. There are heated and cold parts, and these are placed on the bottom and top wall, respectively, whereas the remaining parts are thermally insulated. Design/methodology/approach The finite volume method is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published woks is presented and is found to be in an excellent agreement. Findings The minimization of entropy generation and local heat transfer according to different values of the governing parameters are presented in details. It is found that the presence of magnetic field has negative effects on the local entropy generation because of heat transfer and the local total entropy generation. Also, the increase in the heated part length leads to a decrease in the local Nusselt number. Originality/value This problem is original, as it has not been considered previously.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 178
Author(s):  
Mohammed Alghaseb ◽  
Walid Hassen ◽  
Abdelhakim Mesloub ◽  
Lioua Kolsi

In this study, a 3D numerical study of free ventilated room equipped with a discrete heat source was performed using the Finite Volume Method (FVM). To ensure good ventilation, two parallel openings were created in the room. A suction opening was located at the bottom of the left wall and another opening was located at the top of the opposite wall; the heat source was placed at various positions in order to compare the heating efficiency. The effects of Rayleigh number (103 ≤ Ra ≤ 106) for six heater positions was studied. The results focus on the impact of these parameters on the particle trajectories, temperature fields and on the heat transfer inside the room. It was found that the position of the heater has a dramatic effect on the behavior and topography of the flow in the room. When the heat source was placed on the wall with the suction opening, two antagonistic behaviors were recorded: an improvement in heat transfer of about 31.6%, compared to the other positions, and a low Rayleigh number against 22% attenuation for high Ra values was noted.


Author(s):  
Alireza Rahimi ◽  
Aravindhan Surendar ◽  
Aygul Z. Ibatova ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah

Purpose This paper aims to investigate the three-dimensional natural convection and entropy generation in the rectangular cuboid cavities included by chamfered triangular partition made by polypropylene. Design/methodology/approach The enclosure is filled by multi-walled carbon nanotubes (MWCNTs)-H2O nanofluid and air as two immiscible fluids. The finite volume approach is used for computation. The fluid flow and heat transfer are considered with combination of local entropy generation due to fluid friction and heat transfer. Moreover, a numerical method is developed based on three-dimensional solution of Navier–Stokes equations. Findings Effects of side ratio of triangular partitions (SR = 0.5, 1 and 2), Rayleigh number (103 < Ra < 105) and solid volume fraction (f = 0.002, 0.004 and 0.01 Vol.%) of nanofluid are investigated on both natural convection characteristic and volumetric entropy generation. The results show that the partitions can be a suitable method to control fluid flow and energy consumption, and three-dimensional solutions renders more accurate results. Originality/value The originality of this work is to study the three-dimensional natural convection and entropy generation of a stratified system.


2019 ◽  
Vol 30 (5) ◽  
pp. 2563-2581 ◽  
Author(s):  
Seyedmohammad Mousavisani ◽  
Javad Khalesi ◽  
Hossein Golbaharan ◽  
Mohammad Sepehr ◽  
D.D. Ganji

Purpose The purpose of this paper is to find the approximate solutions of unsteady squeezing nanofluid flow and heat transfer between two parallel plates in the presence of variable heat source, viscous dissipation and inclined magnetic field using collocation method (CM). Design/methodology/approach The partial governing equations are reduced to nonlinear ordinary differential equations by using appropriate transformations and then are solved analytically by using the CM. Findings It is observed that the enhancing values of aligned angle of the magnetic causes a reduction in temperature distribution. It is also seen that the effect of nanoparticle volume fraction is significant on the temperature but negligible on the velocity profile. Originality/value To the best of the authors’ knowledge, no research has been carried out considering the combined effects of inclined Lorentz forces and variable heat source on squeezing flow and heat transfer of nanofluid between the infinite parallel plates.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hamza Berrehal ◽  
G. Sowmya ◽  
Oluwole Daniel Makinde

Purpose In heat transfer, fluids and nanoparticles can provide new innovative technologies with potential to adapt the heat transfer fluid’s thermal properties through control over particle size, shape and others. This paper aims to examine the effects of spherical and non-spherical (cylinder, disk, platelets, etc.) shapes of silver (Ag) nanoparticles on heat transfer enhancement and inherent irreversibility in hydromagnetic water base nanoliquid flow over a convectively heated stretching sheet with heat generation/absorption. Design/methodology/approach Applying suitable similarity constraints, the model partial differential equations are transformed into a set of nonlinear ordinary differential equations. Solutions are obtained analytically via optimal homotopy asymptotic method (OHAM) and numerically via shooting technique coupled with the Runge-Kutta-Fehlberg (RK-F) method. Findings The impact of Ag nanoparticle’s shape along with other germane factors, such as Biot number, magnetic field, solid volume fraction and heat source/sink on velocity and thermal profiles, Nusselt number, skin friction coefficient, heat transfer enhancement, rate of entropy generation and irreversibility ratio, are scrutinized via graphical simulations and discussed. This study revealed that cylindrical shape Ag nanoparticles generate high entropy and fluid friction irreversibility, whereas disk shape Ag nanoparticles exhibit high transfer enhancement rate. Moreover, a boost in magnetic field intensity, volume-fraction parameter and Biot number enhances the thermal boundary layer thickness. Originality/value The main objective of this work is to examine the different Ag nanoparticles shape effects on the heat transfer enhancement and inherent irreversibility owing to hydromagnetic nanoliquid flow past a convectively heated stretching sheet with heat source/sink, which has not been yet studied. It is hope that this study will bridge the gap in the present literature and serve as impetus to scholars, engineers and industries for more exploration in this direction. The intrinsic nonlinearity of the model equations precludes its exact solution; hence, OHAM and shooting technique coupled with the RK-F method have been used to numerically tackle the problem. Pertinent results are discussed quantitatively and displayed graphically and in tabular form.


2018 ◽  
Vol 15 (5) ◽  
pp. 604-613
Author(s):  
Essma Belahmadi ◽  
Rachid Bessaih

Purpose The purpose of this study is to analyze heat transfer and entropy generation of a Cu-water nanofluid in a vertical channel. The channel walls are maintained at a hot temperature Tw. An up flow penetrates the channel at a uniform velocity v0 and a cold temperature T0 (T0 < Tw). The effects of Reynolds number Re, Grashof number Gr and solid volume fraction ϕ on streamlines, isotherms, entropy generation, friction factor, local and mean Nusselt numbers are evaluated. Design/methodology/approach The Cu-water nanofluid is used in this study. The software Ansys-fluent 14.5, based on the finite-volume method and SIMPLE algorithm, is used to simulate the mixed convection problem with entropy generation in a vertical channel. Findings The results show that the increase of Reynolds and Grashof numbers and solid volume fraction improves heat transfer and reduces entropy generation. Correlations for the mean Nusselt number and friction factor in terms of Reynolds number and solid volume fraction are obtained. The present results are compared with those found in the literature, which reveal a very good agreement. Originality/value The originality of this work is to understand the heat transfer and entropy generation for mixed convection of a Cu-water nanofluid in a vertical channel.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
S. Dutta ◽  
S. Bhattacharyya ◽  
I. Pop

Abstract A numerical study on the mixed convection of Al2O3–water nanofluid in a lid-driven inclined square enclosure partially heated from below is performed based on Buongiorno's two phase model. The velocity of the nanoparticles relative to the base fluid is considered due to thermophoresis and Brownian diffusion. The thermophysical properties of the nanofluid are assumed to be dependent on temperature as well as the nanoparticle volume fraction. A control volume method over a staggered grid arrangement is used to discretize the governing equations. The discretized equations of two-dimensional continuity, momentum, energy, and volume fraction are solved through a pressure-correction-based semi-implicit method for pressure linked equations (SIMPLE) algorithm. The effects of relevant parameters such as nanoparticle diameter (25 nm ≤ dp ≤ 90 nm), Richardson number (0.1≤Ri≤5), nanoparticle bulk volume fraction (0 ≤φb≤ 0.05) on the mixed convection of the nanofluid is studied by considering the inclination angle of the enclosure to vary between 0 deg and 60 deg. The entropy generation as well as the Bejan number is evaluated to illustrate the thermodynamic optimization of the mixed convection. Both the heat transfer and entropy generation are higher in the nanofluid compared to the clear fluid and the rate of increment in entropy generation remains lower than the rate by which the heat transfer is augmented in the nanofluid. We find that due to the presence of the Brownian diffusion and thermophoresis in the nonhomogeneous model, a higher heat transfer is yielded as compared to the homogeneous model. The discrepancy between the homogeneous and nonhomogeneous models is significant when the mixed convection is dominated by the shear force. When the mixed convection is dominated by the thermal buoyancy, an increase in positive inclination angle of the enclosure creates a significant increment in the heat transfer.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amin Kardgar

Purpose The purpose of this paper is to investigate conjugate heat transfer of natural convection and entropy generation of nanofluid in the presence of external magnetic field via numerical approach in an inclined square cavity enclosure. Design/methodology/approach Control volume finite volume method with collocated arrangement of grids was used for discretization of continuity, momentum, solid and fluid energy equations. Rhie and Chow interpolation technique was applied to avoid checkerboard problem in pressure field and the well-established SIMPLE algorithm was followed to deal with the pressure and velocity coupling. The cavity is filled with water and nanoparticles of the aluminum oxide (Al2O3). This study has been conducted for the certain pertinent parameters of the volume fraction of nanoparticle (φ = 0–0.08), the angle of inclination (ϴ = 0°–330°), the Ra number (Ra = 103–108), the solid to fluid conductivity ratio (ksf = 1–400), the Ha number (Ha = 0–80) and the wall thickness ratio (δ/L = 0–0.3). Findings The results indicate that averaged Nu number increases by approximately 9% by increasing volume fraction from 0.0 to 0.08. Nu increases with an increasing inclination angle to 40° and decreases abruptly in 90° because of the formation of two weaker vorticity with opposite circulation pattern intensifying the density of isotherm curves in a vertical direction. Nu increases sharply with increasing Ra more than 105. Nu also augments almost 67% by increasing ksf = 1 to ksf = 50 and remains constant by increasing ksf more than 50. Nu number reduction is almost 72% with a variation of wall thickness ratio from d/L = 0 to 0.3. Entropy generation because of fluid flow, magnetic field and heat transfer reduces linearly almost 30%, 19% and 16% by increasing volume fraction, respectively. With increasing ksf, entropy generation because of fluid flow, magnetic field and heat transfer increases asymptotically, but Bejan number decreases. Originality/value A brief review of conducted research studies in nanofluid flow and heat transfer reveals that the effect of wall thermal inertia was not investigated in MHD natural convection of nanofluids in an inclined enclosure. The aim of the present study is to analyze conjugate heat transfer in an inclined cavity filled with water and Al2O3.


2019 ◽  
Vol 29 (4) ◽  
pp. 1506-1525 ◽  
Author(s):  
Ahad Abedini ◽  
Saeed Emadoddin ◽  
Taher Armaghani

Purpose This study aims to investigate the numerical analysis of mixed convection within the horizontal annulus in the presence of water-based fluid with nanoparticles of aluminum oxide, copper, silver and titanium oxide. Numerical solution is performed using a finite-volume method based on the SIMPLE algorithm, and the discretization of the equations is generally of the second order. Inner and outer cylinders have a constant temperature, and the inner cylinder temperature is higher than the outer one. The two cylinders can be rotated in both directions at a constant angular velocity. The effect of parameters such as Rayleigh, Richardson, Reynolds and the volume fraction of nanoparticles on heat transfer and flow pattern are investigated. The results show that the heat transfer rate increases with the increase of the Rayleigh number, as well as by increasing the volume fraction of the nanoparticles, the heat transfer rate increases, and this increase is about 8.25 per cent for 5 per cent volumetric fraction. Rotation of the cylinders reduces the overall heat transfer. Different directions of rotation have a great influence on the flow pattern and isotherms, and ultimately on heat transfer. The addition of nanoparticles does not have much effect on the flow pattern and isotherms, but it is quantitatively effective. The extracted results are in good agreement with previous works. Design/methodology/approach Studying mixed convection heat transfer in the horizontal annulus in the presence of a water-based fluid with aluminum oxide, copper, silver and titanium oxide nanoparticles is carried out quantitatively using a finite-volume method based on the SIMPLE algorithm. Findings Increasing the Rayleigh number increases the Nusselt number. Increasing the Richardson number increases heat transfer. Adding nanoparticles does not have much effect on the flow pattern but is effective quantitatively on heat transfer parameters. The addition of nanoparticles sometimes increases the heat transfer rate by about 8.25 per cent. In constant Rayleigh numbers, increasing the Reynolds number reduces heat transfer. The Rayleigh and Reynolds numbers greatly affect the isotherms and streamlines. In addition to the thermal conductivity of nanoparticles, the thermo-physical properties of nanoparticles has great effect in the formation of isotherms and streamlines and ultimately heat transfer. Originality/value Studying the effect of different direction of rotation on the isotherms and streamlines, as well as the comparison of different nanoparticles on mixed convection heat transfer in annulus.


Sign in / Sign up

Export Citation Format

Share Document