Analysis of shielding effectiveness and mechanical properties of metal matrix composite AL6061 reinforced with Al2O3 and fly ash for oblique incidence of EM wave

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Srinu Budumuru ◽  
Satya Anuradha Mosa

PurposeFiber-reinforced polymers (FRP) contain critical electrical conductivity for high-intensity radiated fields such as lightning strike susceptibility, electromagnetic energy from radar, airborne radio frequency transmitter. To provide high-intensity radiated field protection (HIRFP) for the electric and electronic aircraft system and defied the EMI effect on it, metal matrix composite was conquered. To provide the dynamic ever-increasing requirement of industries, it is necessary that Al6061 metal matrix composite assisted with AL2O3 and fly ash is used to construct the aircraft to provide HIRFP. The thickness of the material can be maintained as low as possible to use it as a coating material for the aircraft surface. X-band for oblique incidence is used to measure electromagnetic and mechanical safeguarding properties of composites.Design/methodology/approachDay by day, the applications of aerospace are becoming digital and automated. Proper shielding techniques are required to operate digital electronic devices without electromagnetic interference. It leads to a rapid rise in temperature, thermal ablation, delamination, and adverse effects on the electric and electronic aircraft system. Fly ash, a metal matrix material composite AL6061 with different percentages of reinforcement of Al2O3, was contemplated and experimented with for mechanical properties like tensile strength, density and hardness.FindingsThe obtained results compared with adjusted values and an improvement of 0.19, 0.18, 0.14 g/cm3 for density of MMC-1, MMC-2, MMC-3.31, 11 MPa for tensile strength of MMC-1, MMC-2. 24, 27, 23 BHN for hardness of MMC-1, MMC-2, MMC-3. With regard to the shielding effectiveness the results compared with adjusted values and obtained 11.36, 14.56, 19.47 dB better value than it. According to the above results, fabricated MMC’s provide superior results for a defined application like HIRFP(Surface material of aircraft).Practical implicationsIt can be used to protect electronic devices under a high-intensity radiated field, mainly in aircraft design to protect from lightning effect.Originality/valueFor a better approximation of the signal toward the practical case, the oblique incidence was considered with a different combination of Al2O3 and fly ash, reinforced to pure AL6061 to get better shielding and mechanical properties.

Author(s):  
Madan Kumar K.N. ◽  
G. M. Satyanarayana

Aluminium based composite are getting a vast scope nowadays because of its properties and availability. In the present work, fly ash and AL2O3 reinforced composite are prepared using stir casting technique for varying wt.% (fly ash 3% and AL2O3 3%, 6% & 9%). Hardness and tensile properties were determined, with the addition of reinforcement the properties are improved compared to the parent metal alone. Based on the evaluation 6% AL2O3 and 3%fly ash gives a better result as compared to other composition.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajat Yadav ◽  
Shashi Prakash Dwivedi ◽  
Vijay Kumar Dwivedi ◽  
Anas Islam

Purpose This study aims to attempt to make an aluminum-based composite using reinforcement such as graphite and fly ash. Pollution is an enhanced serious issue of concern for global. Industries play a major role in disturbing the balance of the environment system. Composite is made by using the stir casting technique. The waste that is generated by the industries if left untreated or left to be rotten at some place may prove fatal to invite various types of diseases. Proper treatment of these wastes is the need of the hour, the best way to get rid of such kinds of hazardous wastes is to use them by recycling. Design/methodology/approach Stir casting technique was used to make a composite. Graphite and fly ash were mixed with equal amounts of 2.5% to 15% in aluminum. The microstructure of composite formed after composite was noticed. After seeing the microstructure it was understood that reinforcement particles are very well-mixed in aluminum. Findings When graphite was mixed with 3.75% and 3.75% fly ash in aluminum, the strength of the composite came to about 171.12 MPa. As a result, the strength of the composite increased by about 16.10% with respect to the base material. In the same way, when 3.75% graphite and 3.75% fly ash were added to aluminum, the hardness of the composite increased by about 26.60%. Originality/value In this work, graphite and fly ash have been used to develop green metal matrix composite to support the green revolution as promoted/suggested by United Nations, thus reducing the environmental pollution. The addition of graphite and fly ash to aluminum reduced toughness. The thermal expansion of the composite has also been observed to know whether the composite made is worth using in higher temperatures.


2018 ◽  
Vol 2 (3) ◽  
pp. 49 ◽  
Author(s):  
Ch Hima Gireesh ◽  
K. Durga Prasad ◽  
Koona Ramji

The demand for aluminum hybrid metal matrix composites has increased in recent times due to their enhanced mechanical properties for satisfying the requirements of advanced engineering applications. The performance of these materials is greatly influenced by the selection of an appropriate combination of reinforcement materials. The reinforcement materials include carbides, nitrides, and oxides. The ceramic particles, such as silicon carbide and aluminum oxide, are the most widely used reinforcement materials for preparing these composites. In this paper, an attempt has been made to prepare an Al6061 hybrid metal matrix composite (HAMMC) reinforced with particulates with different weight fractions of SiC and Al2O3 and a constant weight fraction (5%) of fly ash by a stir-casting process. The experimental study has been carried out on the prepared composite to investigate the mechanical properties due to the addition of multiple reinforcement materials. The density and mechanical properties, such as ultimate tensile strength, yield strength, impact strength, and the hardness and wear characteristics of the proposed composite, are compared with those of unreinforced Al6061. The experimental investigation is also aimed at observing the variation of properties with a varying weight percentage of the reinforcement materials SiC and Al2O3 simultaneously with the fly ash content maintained constant. The outcome of the experimental investigation revealed that the proposed hybrid composite with 20% of total reinforcement material exhibits high hardness, high yield strength, and low wear rate but no considerable improvement in impact strength.


Sign in / Sign up

Export Citation Format

Share Document