Effect of randomly dispersed short fibers on the flexural resistance factor of concrete beams reinforced with GFRP bars

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bashar Ramzi Behnam ◽  
Mohammed M. Mahmood Al-Iessa

Purpose The purpose of this paper is to investigate the potential design advantage in terms of resistance factors for normal weight concrete beams containing moderate-dose randomly dispersed short fibers and reinforced with glass fiber reinforced polymer (GFRP) bars.Design/methodology/approach An analytical model based on the current code specifications is used to calculate the moment capacity of over-reinforced sections. The vast majority of the considered beams are over-reinforced, compression-controlled. The data of the fiber-reinforced concrete (FRC) reinforced with GFRP bars are collected from three published research studies which are based on experimentally tested results. Three different types of short fibers with four volume fractions are considered. Probabilistic model is established to conduct reliability-based calibration using Monte-Carlo Simulation. Limit state function, relevant load and resistance random variables are identified, and adequate statistical parameters are selected. Target reliability index consistent with the one used to develop current design code specifications is used.Findings Reliability analysis and calibration process are carried out with the intention of estimating the flexural resistance factors for FRC beams reinforced with GFRP bars.Originality/value The predicted flexural resistance factors ranged from 0.72 to 0.95, giving the resistance factors the potential to be increased above the currently specified value of 0.65 for compression-controlled members reinforced with FRP bars.

2017 ◽  
Vol 52 (2) ◽  
pp. 121-134 ◽  
Author(s):  
Duy-Liem Nguyen ◽  
Duc-Kien Thai ◽  
Dong-Joo Kim

This research investigated the effects of direct tensile response on the flexural resistance of ultra-high-performance fiber-reinforced concretes by performing sectional analysis. The correlations between direct tensile and flexural response of ultra-high-performance fiber-reinforced concretes were investigated in detail for the development of a design code of ultra-high-performance fiber-reinforced concrete flexural members as follows: (1) the tensile resistance of ultra-high-performance fiber-reinforced concretes right after first-cracking in tension should be higher than one-third of the first-cracking strength to obtain the deflection-hardening if the ultra-high-performance fiber-reinforced concretes show tensile strain-softening response; (2) the equivalent bottom strain of flexural member at the modulus of rupture is always higher than the strain capacity of ultra-high-performance fiber-reinforced concretes in tension; (3) the softening part in the direct tensile response of ultra-high-performance fiber-reinforced concretes significantly affects their flexural resistance; and (4) the moment resistance of ultra-high-performance fiber-reinforced concrete girders is more significantly influenced by the post-cracking tensile strength rather than the tensile strain capacity. Moreover, the size and geometry effects should be carefully considered in predicting the moment capacity of ultra-high-performance fiber-reinforced concrete beams.


Structures ◽  
2022 ◽  
Vol 35 ◽  
pp. 55-67
Author(s):  
Omar Khalid Ali ◽  
Abdulkader Ismail Al-Hadithi ◽  
Ahmed Tareq Noaman

Sign in / Sign up

Export Citation Format

Share Document