Tribological performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber using a CVD method

2020 ◽  
Vol 72 (6) ◽  
pp. 771-777
Author(s):  
Noor Ayuma Mat Tahir ◽  
Mohd Fadzli Bin Abdollah ◽  
Noreffendy Tamaldin ◽  
Hilmi Amiruddin ◽  
Mohd Rody Bin Mohamad Zin ◽  
...  

Purpose This paper aims to examine the friction and wear performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber (OPF). Design/methodology/approach The graphene was synthesized by using a chemical vapor deposition method, where a copper sheet was used as the substrate. The dry sliding test was performed by using a micro ball-on-disc tribometer at various sliding speeds and applied loads. Findings The results show that both as-grown graphenes decrease the coefficient of friction significantly. Likewise, the wear rate is also lower at higher sliding speed and applied load. For this study, OPF is proposed as the best solid carbon source for synthesizing the graphene. Originality/value The main contribution of this study is opening a new perspective on the potentials of producing graphene from solid waste materials and its effect on the tribological performance. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0486

Author(s):  
Noor Ayuma Mat Tahir ◽  
Mohd Fadzli Bin Abdollah ◽  
Noreffendy Tamaldin ◽  
Hilmi Amiruddin ◽  
Mohd Rody Bin Mohamad Zin ◽  
...  

2019 ◽  
Vol 72 (5) ◽  
pp. 637-643
Author(s):  
Jianping Ma ◽  
Lianfa Yang ◽  
Yulin He ◽  
Jian Guo

Purpose This paper aims to study frictional characteristics of thin-walled tubes in the liquid impact forming (LIF) process. Design/methodology/approach LIF experiments under various impacting velocities were performed on SUS304 stainless steel tubes with various guiding lengths on a custom-designed measurement system to investigate the effects of impacting velocity and guiding length on the coefficient of friction (COF) in the guiding zone. Findings The results indicate that the COF changes dynamically in the guiding zone and decreases with the deformation process. The reduction range of the COF is wider in LIF than in both the conventional and pulsating hydroforming (THF), which may be contributed to the impacting velocities in a short time. Moreover, the COF decreases faster in the first half of the LIF process than in the second half. Under different impacting velocities and guiding lengths, the decreasing rate of the COF in the first half is more sensitive and obvious than that in the second half. Originality/value A method for determining the COF in the guiding zone in LIF is proposed and the frictional characteristics in LIF are studied. Comparing the COF of tubes in conventional THF, pulsating THF and the LIF process is valuable for improving and predicting the tubular formability in various hydraulic environments for industrial production. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2019-0269


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tian Tian ◽  
Ruibo Zhao ◽  
Dongbo Wei ◽  
Kai Yang ◽  
Pingze Zhang

Purpose The purpose of this paper is to expound the relationship among microstructure, mechanical property, tribological behavior and deformation mechanism of carburized layer deposited on Ti-6Al-4V alloy by double-glow plasma hydrogen-free carburizing surface technology. Design/methodology/approach Morphologies and phase compositions of the carburized layer were observed by scanning electron microscope and X-ray diffraction. The micro-hardness tests were used to evaluate the surface and cross-sectional hardness of carburized layer. The reciprocating friction and wear experiments under various load conditions were implemented to investigate the tribological behavior of carburized layer. Moreover, scratch test with ramped loading pattern was carried out to illuminate the deformation mechanism of carburized layer. Findings Compared to substrate, the hardness of surface improved to ∼1,100 HV0.1, while the hardness profile of carburized layer presented gradual decrease from ∼1,100 to ∼300 HV0.1 within the distance of the total carburizing-affected region about 30 µm. The coefficient of friction, wear rate and wear morphology of carburized layer were analyzed. Scratch test indicated that the deformation process of carburized layer could be classified into three mechanisms (elastic, changing elastic–plastic and stable elastic–plastic mechanisms), and the deformation transition of the carburizing-affected region was from changing elastic–plastic to elastic mechanisms. Both the elastic and changing elastic–plastic mechanisms are conducive to the wearing course. Originality/value Using this technology, hydrogen embrittlement was avoided and wear resistance property of titanium alloy was greatly improved. Simultaneously, the constitutive relation during the whole loading process was deduced in terms of scratch approach, and the deformation mechanism of carburized layer was discussed from a novel viewpoint. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0489/


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vijay R. ◽  
Manoharan S. ◽  
Nagarajan S. ◽  
Lenin Singaravelu D.

Purpose The purpose of this study is to deals with the effect of premixed dual metal sulfides (tin disulfide + iron disulfide) as a replacement for antimony trisulfide on the tribological performance of brake friction materials. Design/methodology/approach In this study, brake friction materials were developed by using premixed dual metal sulfides as a replacement for antimony trisulfide in the formulation. The brake friction materials were developed in the form of standard brake pads as per the industrial practice. Thermal stability was measured for varying ingredients and developed brake pads using thermogravimetric analysis. The physical, mechanical and thermal properties of the developed brake pads were tested as per the industrial standards. The tribological properties were analyzed using the Chase test as per SAE J661. Worn surface analysis was done using a scanning electron microscope. Findings The experimental results indicate that the brake pads filled with premixed dual metal sulfides had good thermal stability, physical, chemical and mechanical properties with stable friction and less wear rate due to better lubrication preventing friction undulations. Originality/value This paper explains the influence of premixed dual metal sulfides as a replacement for antimony trisulfide in brake pads formulation to enhance the tribological performance by preventing friction undulations. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0144/


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sathickbasha K. ◽  
Selvakumar A.S. ◽  
Surya Rajan Balachandran ◽  
Hariharasakthisudhan P.

Purpose The purpose of this study is the influence of various combinations of metal sulfides on the tribological performance of brake pads. Design/methodology/approach Three brake pads were prepared using the possible combination of any two of the solid lubricants from Bismuth trisulfide (Bi2S3); Tin disulfide (SnS2) and Antimony trisulfide (Sb2S3) are chosen and blended with molybdenum disulfide and graphite. The tribological performance was compared with the brake pad containing aftermarket sulfide mixture. The tribological performance parameters such as performance coefficient of friction, fade percent, recovery percent, wear thickness loss, time is taken to reach the maximum temperature and fluctuation of friction were investigated using Chase tribometer adopting IS 2742 Part-4 (1994) test procedure. Findings The friction stability of the brake pad with 4Wt% of MoS2, Bi2S3 and SnS2 was observed to be better, but it showed poor wear performance and aggressive towards the rotor, whereas the brake pad contained 4Wt% of MoS2, Bi2S3 and Sb2S3 exhibited improved wear performance. Originality/value This paper explains the influence of the combination of multiple metal sulfide in the tribological performance of the copper-free brake friction composite. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0249/


Sign in / Sign up

Export Citation Format

Share Document