An improved kinematic model for serial robot calibration based on local POE formula using position measurement

Author(s):  
Hua Liu ◽  
Weidong Zhu ◽  
Huiyue Dong ◽  
Yinglin Ke

Purpose This paper aims to propose a calibration model for kinematic parameters identification of serial robot to improve its positioning accuracy, which only requires position measurement of the end-effector. Design/methodology/approach The proposed model is established based on local frame representation of the product of exponentials (local POE) formula, which integrates all kinematic errors into the twist coordinates errors; then they are identified with the tool frame’ position deviations simultaneously by an iterative least squares algorithm. Findings To verify the effectiveness of the proposed method, extensive simulations and calibration experiments have been conducted on a 4DOF SCARA robot and a 5DOF drilling machine, respectively. The results indicate that the proposed model outperforms the existing model in convergence, accuracy, robustness and efficiency; fewer measurements are needed to gain an acceptable identification result. Practical implications This calibration method has been applied to a variable-radius circumferential drilling machine. The machine’s positioning accuracy can be significantly improved from 11.153 initially to 0.301 mm, which is well in the tolerance (±0.5 mm) for fastener hole drilling in aircraft assembly. Originality/value An accurate and efficient kinematic calibration model has been proposed, which satisfies the completeness, continuity and minimality requirements. Due to generality, this model can be widely used for serial robot kinematic calibration with any combination of revolute and prismatic joints.

Author(s):  
Guozhi Li ◽  
Fuhai Zhang ◽  
Yili Fu ◽  
Shuguo Wang

Purpose The purpose of this paper is to propose an error model for serial robot kinematic calibration based on dual quaternions. Design/methodology/approach The dual quaternions are the combination of dual-number theory and quaternion algebra, which means that they can represent spatial transformation. The dual quaternions can represent the screw displacement in a compact and efficient way, so that they are used for the kinematic analysis of serial robot. The error model proposed in this paper is derived from the forward kinematic equations via using dual quaternion algebra. The full pose measurements are considered to apply the error model to the serial robot by using Leica Geosystems Absolute Tracker (AT960) and tracker machine control (T-MAC) probe. Findings Two kinematic-parameter identification algorithms are derived from the proposed error model based on dual quaternions, and they can be used for serial robot calibration. The error model uses Denavit–Hartenberg (DH) notation in the kinematic analysis, so that it gives the intuitive geometrical meaning of the kinematic parameters. The absolute tracker system can measure the position and orientation of the end-effector (EE) simultaneously via using T-MAC. Originality/value The error model formulated by dual quaternion algebra contains all the basic geometrical parameters of serial robot during the kinematic calibration process. The vector of dual quaternion error can be used as an indicator to represent the trend of error change of robot’s EE between the nominal value and the actual value. The accuracy of the EE is improved after nearly 20 measurements in the experiment conduct on robot SDA5F. The simulation and experiment verify the effectiveness of the error model and the calibration algorithms.


Author(s):  
Wang Zhenhua ◽  
Xu Hui ◽  
Chen Guodong ◽  
Sun Rongchuan ◽  
Lining Sun

Purpose – The purpose of this paper is to present a distance accuracy-based industrial robot kinematic calibration model. Nowadays, the repeatability of the industrial robot is high, while the absolute positioning accuracy and distance accuracy are low. Many factors affect the absolute positioning accuracy and distance accuracy, and the calibration method of the industrial robot is an important factor. When the traditional calibration methods are applied on the industrial robot, the accumulative error will be involved according to the transformation between the measurement coordinate and the robot base coordinate. Design/methodology/approach – In this manuscript, a distance accuracy-based industrial robot kinematic calibration model is proposed. First, a simplified kinematic model of the robot by using the modified Denavit–Hartenberg (MDH) method is introduced, then the proposed distance error-based calibration model is presented; the experiment is set up in the next section. Findings – The experimental results show that the proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically. Originality/value – The proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically.


Author(s):  
Jiabo Zhang ◽  
Xibin Wang ◽  
Ke Wen ◽  
Yinghao Zhou ◽  
Yi Yue ◽  
...  

Purpose The purpose of this study is the presentation and research of a simple and rapid calibration methodology for industrial robot. Extensive research efforts were devoted to meet the requirements of online compensation, closed-loop feedback control and high-precision machining during the flexible machining process of robot for large-scale cabin. Design/methodology/approach A simple and rapid method to design and construct the transformation relation between the base coordinate system of robot and the measurement coordinate system was proposed based on geometric constraint. By establishing the Denavit–Hartenberg model for robot calibration, a method of two-step error for kinematic parameters calibration was put forward, which aided in achievement of step-by-step calibration of angle and distance errors. Furthermore, KUKA robot was considered as the research object, and related experiments were performed based on laser tracker. Findings The experimental results demonstrated that the accuracy of the coordinate transformation could reach 0.128 mm, which meets the transformation requirements. Compared to other methods used in this study, the calibration method of two-step error could significantly improve the positioning accuracy of robot up to 0.271 mm. Originality/value The methodology based on geometric constraint and two-step error is simple and can rapidly calibrate the kinematic parameters of robot. It also leads to the improvement in the positioning accuracy of robot.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jinlei Zhuang ◽  
Ruifeng Li ◽  
Chuqing Cao ◽  
Yunfeng Gao ◽  
Ke Wang ◽  
...  

Purpose This paper aims to propose a measurement principle and a calibration method of measurement system integrated with serial robot and 3D camera to identify its parameters conveniently and achieve high measurement accuracy. Design/methodology/approach A stiffness and kinematic measurement principle of the integrated system is proposed, which considers the influence of robot weight and load weight on measurement accuracy. Then an error model is derived based on the principle that the coordinate of sphere center is invariant, which can simultaneously identify the parameters of joint stiffness, kinematic and hand-eye relationship. Further, considering the errors of the parameters to be calibrated and the measurement error of 3D camera, a method to generate calibration observation data is proposed to validate both calibration accuracy and parameter identification accuracy of calibration method. Findings Comparative simulations and experiments of conventional kinematic calibration method and the stiffness and kinematic calibration method proposed in this paper are conducted. The results of the simulations show that the proposed method is more accurate, and the identified values of angle parameters in modified Denavit and Hartenberg model are closer to their real values. Compared with the conventional calibration method in experiments, the proposed method decreases the maximum and mean errors by 19.9% and 13.4%, respectively. Originality/value A new measurement principle and a novel calibration method are proposed. The proposed method can simultaneously identify joint stiffness, kinematic and hand-eye parameters and obtain not only higher measurement accuracy but also higher parameter identification accuracy, which is suitable for on-site calibration.


Robotica ◽  
2014 ◽  
Vol 33 (6) ◽  
pp. 1295-1313 ◽  
Author(s):  
Ruibo He ◽  
Xiwen Li ◽  
Tielin Shi ◽  
Bo Wu ◽  
Yingjun Zhao ◽  
...  

SUMMARYBased on product of exponentials (POE) formula, three explicit error models are given in this paper for kinematic calibration of serial robot through measuring its end-effector positions. To obtain these error models, the tool frame should be chosen as reference frame at first, and then each position–error-related segment in the error models using pose measurement should be selected. And during kinematic parameter identification, all the errors in joint twists are identifiable, and the initial transformation errors and the joint zero-position errors can be identified conditionally. Namely, the initial transformation errors are identifiable if they do not contain orientation errors. And the joint zero-position errors are identifiable when a robot only consists of prismatic joints and the coordinates of its joint twists are linearly independent.The effectiveness of this calibration method has been validated by simulations and experiments. The results show that: (1) the identification algorithms are robust and practical. (2) The method of position measurement is superior to that of pose measurement.


Author(s):  
Mehdi Dehghani ◽  
Mahdi Ahmadi ◽  
Alireza Khayatian ◽  
Mohamad Eghtesad ◽  
Mehran Yazdi

Purpose – The purpose of this paper is to present a vision-based method for the kinematic calibration of a six-degrees-of-freedom parallel robot named Hexa using only one Universal Serial Bus (USB) camera and a chess pattern installed on the robot's mobile platform. Such an approach avoids using any internal sensors or complex three-dimensional measurement systems to obtain the pose (position/orientation) of the robot's end-effector or the joint coordinates. Design/methodology/approach – The setup of the proposed method is very simple; only one USB camera connected to a laptop computer is needed and no contact with the robot is necessary during the calibration procedure. For camera modeling, a pinhole model is used; it is then modified by considering some distortion coefficients. Intrinsic and extrinsic parameters and the distortion coefficients are found by an offline minimization algorithm. The chess pattern makes image corner detection very straightforward; this detection leads to finding the camera and then the kinematic parameters. To carry out the calibration procedure, several trajectories are run (the results of two of them are presented here) and sufficient specifications of the poses (positions/orientations) are calculated to find the kinematic parameters of the robot. Experimental results obtained when applying the calibration procedure on a Hexa parallel robot show that vision-based kinematic calibration yields enhanced and efficient positioning accuracy. After successful calibration and addition of an appropriate control scheme, the robot has been considered as a color-painting prototype robot to serve in relevant industries. Findings – Experimental results obtained when applying the calibration procedure on a Hexa parallel robot show that vision-based kinematic calibration yields enhanced and efficient positioning accuracy. Originality/value – The enhanced results show the advantages of this method in comparison with the previous calibration methods.


2018 ◽  
Vol 38 (2) ◽  
pp. 226-238 ◽  
Author(s):  
Dan Zhao ◽  
Yunbo Bi ◽  
Yinglin Ke

Purpose This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose accuracy into account, which will largely influence the machining accuracy of the dual-machine system and assembly quality. Design/methodology/approach A comprehensive kinematic model of the dual-machine system is established by the superposition of sub-models with pose constraints, which involves base frame parameters, kinematic parameters and tool frame parameters. Based on the kinematic model and the actual pose error data measured by a laser tracker, the parameters of coordinated machines are identified by the Levenberg–Marquardt method as a multi-objective nonlinear optimization problem. The identified parameters of the coordinated machines will be used in the control system. Findings A new calibration method for the dual-machine system is developed, including a comprehensive kinematic model and an efficient parameter identification method. The experiment results show that with the proposed method, the pose accuracy of the dual-machine system was remarkably improved, especially the relative position and orientation errors. Practical implications This method has been used in an aircraft assembly project. The calibrated dual-machine system shows a good performance on system coordination and machining accuracy. Originality/value This paper proposes a new method with high accuracy and efficiency for the dual-machine system calibration. The research can be extended to multi-machine and multi-robot fields to improve the system precision.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zhirong Wang ◽  
Zhangwei Chen ◽  
Yuxiang Wang ◽  
Chentao Mao ◽  
Qiang Hang

Robot calibration is used to improve the accuracy of the kinematic model to achieve the higher positioning accuracy within the workspace. Due to some nongeometrical reasons such as joint and link flexibility, the errors are unevenly distributed in the workspace. In this case, it is difficult for the existing methods used to improve the absolute positioning accuracy to achieve good results in each region, especially for robots with large self-weights. In this paper, a novel calibration method is proposed, which deals with joint deflection dependent errors to enhance the robot positioning accuracy in the whole workspace. Firstly, the joint angle workspace is divided into several local regions according to the mass distribution of the robot. Then, its geometric parameters are modeled and identified using the Denavit–Hartenberg (DH) model in each region and in the whole workspace separately. Since the nongeometric error sources are difficult to model correctly, an artificial neural network (ANN) is applied to compensate for the nongeometric errors. Finally, the experiments using an 8 degree-of-freedom (DOF) engineering robot are conducted to demonstrate the validity of the proposed method. The combination of the joint angle division and ANN could be an effective solution for the robot calibration, especially for one with a large self-weight.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xi Luo ◽  
Yingjie Zhang ◽  
Lin Zhang

Purpose The purpose of this paper is to improve the positioning accuracy of 6-Dof serial robot by the way of error compensation and sensitivity analysis. Design/methodology/approach In this paper, the Denavit–Hartenberg matrix is used to construct the kinematics models of the robot; the effects from individual joint and several joints on the end effector are estimated by simulation. Then, an error model based on joint clearance is proposed so that the positioning accuracy at any position of joints can be predicted for compensation. Through the simulation of the curve path, the validity of the error compensation model is verified. Finally, the experimental results show that the error compensation method can improve the positioning accuracy of a two joint exoskeleton robot by nearly 76.46%. Findings Through the analysis of joint error sensitivity, it is found that the first three joints, especially joint 2, contribute a lot to the positioning accuracy of the robot, which provides guidance for the accuracy allocation of the robot. In addition, this paper creatively puts forward the error model based on joint clearance, and the error compensation method which decouples the positioning accuracy into joint errors. Originality/value It provides a new idea for error modeling and error compensation of 6-Dof serial robot. Combining sensitivity analysis results with error compensation can effectively improve the positioning accuracy of the robot, and provide convenience for welding robot and other robots that need high positioning accuracy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bence Tipary ◽  
Ferenc Gábor Erdős

Purpose The purpose of this paper is to propose a novel measurement technique and a modelless calibration method for improving the positioning accuracy of a three-axis parallel kinematic machine (PKM). The aim is to present a low-cost calibration alternative, for small and medium-sized enterprises, as well as educational and research teams, with no expensive measuring devices at their disposal. Design/methodology/approach Using a chessboard pattern on a ground-truth plane, a digital indicator, a two-dimensional eye-in-hand camera and a laser pointer, positioning errors are explored in the machine workspace. With the help of these measurements, interpolation functions are set up per direction, resulting in an interpolation vector function to compensate the volumetric errors in the workspace. Findings Based on the proof-of-concept system for the linear-delta PKM, it is shown that using the proposed measurement technique and modelless calibration method, positioning accuracy is significantly improved using simple setups. Originality/value In the proposed method, a combination of low-cost devices is applied to improve the three-dimensional positioning accuracy of a PKM. By using the presented tools, the parametric kinematic model is not required; furthermore, the calibration setup is simple, there is no need for hand–eye calibration and special fixturing in the machine workspace.


Sign in / Sign up

Export Citation Format

Share Document