Vision-based calibration of a Hexa parallel robot

Author(s):  
Mehdi Dehghani ◽  
Mahdi Ahmadi ◽  
Alireza Khayatian ◽  
Mohamad Eghtesad ◽  
Mehran Yazdi

Purpose – The purpose of this paper is to present a vision-based method for the kinematic calibration of a six-degrees-of-freedom parallel robot named Hexa using only one Universal Serial Bus (USB) camera and a chess pattern installed on the robot's mobile platform. Such an approach avoids using any internal sensors or complex three-dimensional measurement systems to obtain the pose (position/orientation) of the robot's end-effector or the joint coordinates. Design/methodology/approach – The setup of the proposed method is very simple; only one USB camera connected to a laptop computer is needed and no contact with the robot is necessary during the calibration procedure. For camera modeling, a pinhole model is used; it is then modified by considering some distortion coefficients. Intrinsic and extrinsic parameters and the distortion coefficients are found by an offline minimization algorithm. The chess pattern makes image corner detection very straightforward; this detection leads to finding the camera and then the kinematic parameters. To carry out the calibration procedure, several trajectories are run (the results of two of them are presented here) and sufficient specifications of the poses (positions/orientations) are calculated to find the kinematic parameters of the robot. Experimental results obtained when applying the calibration procedure on a Hexa parallel robot show that vision-based kinematic calibration yields enhanced and efficient positioning accuracy. After successful calibration and addition of an appropriate control scheme, the robot has been considered as a color-painting prototype robot to serve in relevant industries. Findings – Experimental results obtained when applying the calibration procedure on a Hexa parallel robot show that vision-based kinematic calibration yields enhanced and efficient positioning accuracy. Originality/value – The enhanced results show the advantages of this method in comparison with the previous calibration methods.

2011 ◽  
Vol 464 ◽  
pp. 340-343
Author(s):  
Wei Da Li ◽  
Juan Li ◽  
Li Ning Sun

Kinematic calibration is an effective method of improving robotic absolute position accuracy by means of measurement, identification and compensation etc. This paper investigates the technology of kinematic calibration and error compensation for the 2-DOF planar parallel robot. A multi-step calibration method is presented based on error itterative method and nonlinear optimum method. Experimental results indicate that the proposed method can effectively compensate position error of the robot in Oxy plane, and the absolute position error of the calibrated robot is less than 6μm.


Author(s):  
Jiabo Zhang ◽  
Xibin Wang ◽  
Ke Wen ◽  
Yinghao Zhou ◽  
Yi Yue ◽  
...  

Purpose The purpose of this study is the presentation and research of a simple and rapid calibration methodology for industrial robot. Extensive research efforts were devoted to meet the requirements of online compensation, closed-loop feedback control and high-precision machining during the flexible machining process of robot for large-scale cabin. Design/methodology/approach A simple and rapid method to design and construct the transformation relation between the base coordinate system of robot and the measurement coordinate system was proposed based on geometric constraint. By establishing the Denavit–Hartenberg model for robot calibration, a method of two-step error for kinematic parameters calibration was put forward, which aided in achievement of step-by-step calibration of angle and distance errors. Furthermore, KUKA robot was considered as the research object, and related experiments were performed based on laser tracker. Findings The experimental results demonstrated that the accuracy of the coordinate transformation could reach 0.128 mm, which meets the transformation requirements. Compared to other methods used in this study, the calibration method of two-step error could significantly improve the positioning accuracy of robot up to 0.271 mm. Originality/value The methodology based on geometric constraint and two-step error is simple and can rapidly calibrate the kinematic parameters of robot. It also leads to the improvement in the positioning accuracy of robot.


2021 ◽  
Author(s):  
Lingyu Kong ◽  
Genliang Chen ◽  
Guanyu Huang ◽  
Sumian Song ◽  
Anhuan Xie ◽  
...  

Abstract Kinematic error model plays an important role in improving the positioning accuracy of robot manipulators by kinematic calibration. The identifiability of kinematic parameters in the error model directly affects the positioning accuracy of the mechanism. And the number of identifiable kinematic parameters determines how many parameters can be accurately identified by kinematic calibration, which is one of the theoretical basis of kinematic error modeling. For serial mechanisms, a consensus has been reached that the maximum number of identifiable kinematic parameters is 4R + 2P + 6, where R and P represent the numbers of revolute and prismatic joints, respectively. Due to complex topologies of parallel mechanisms, there is still no agreement on the formula of the maximum number of identifiable parameters. In this paper, a comprehensive numerical study on the number of identifiable kinematic parameters of parallel mechanisms is conducted. The number of identifiable parameters of 3802 kinds of limbs with different types or actuation arrangements are analyzed. It can be concluded that the maximum number of identifiable kinematic parameters is Σ i = 1 n 4Ri + 2Pi + 6 − Ci − 2(PP)i/3(PPP1)i/(2Ri + 2Pi)(PPP)i, where Ci represents the number of joints whose motion cannot be measured and n denotes the number of limbs in a parallel mechanism; (PP)i, (PPP1)i, and (PPP)i represent two consecutive unmeasurable P joints, three consecutive P joints in which two of them cannot be measured, and three unmeasurable P joints, respectively.


Robotica ◽  
2019 ◽  
Vol 37 (5) ◽  
pp. 837-850
Author(s):  
Genliang Chen ◽  
Lingyu Kong ◽  
Qinchuan Li ◽  
Hao Wang

SummaryKinematic calibration plays an important role in the improvement of positioning accuracy for parallel manipulators. Based on the specific geometric constraints of limbs, this paper presents a new kinematic parameter identification method for the widely studied 3-PRS parallel manipulator. In the proposed calibration method, the planes where the PRS limbs exactly located are identified firstly as the geometric characteristics of the studied parallel manipulator. Then, the limbs can be considered as planar PR mechanisms whose kinematic parameters can be determined conveniently according to the limb planes identified in the first step. The main merit of the proposed calibration method is that the system error model which relates the manipulator’s kinematic errors to the output ones is not required for kinematic parameter identification. Instead, only two simple geometric problems need to be established for identification, which can be solved readily using gradient-based searching algorithms. Hence, another advantage of the proposed method is that parameter identification of the manipulator’s limbs can be accomplished individually without interactive impact on each other. In order to validate the effectiveness and efficiency of the proposed method, calibration experiments are conducted on an apparatus of the studied 3-PRS parallel manipulator. The results show that using the proposed two-step calibration method, the kinematic parameters can be identified quickly by means of gradient searching algorithm (converge within five iterations for both steps). The positioning accuracy of the studied 3-PRS parallel manipulator has been significantly improved by compensation according to the identified parameters. The mean position and orientation errors at the validation configurations have been reduced to 1.56 × 10−4 m and 1.13 × 10−3 rad, respectively. Further, the proposed two-step kinematic calibration method can be extended to other limited-degree-of-freedom parallel manipulators, if proper geometric constraints can be characterized for their kinematic limbs.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2392 ◽  
Author(s):  
XueJun Jin ◽  
Jinwoo Jung ◽  
Seong Ko ◽  
Eunpyo Choi ◽  
Jong-Oh Park ◽  
...  

A cable-driven parallel robot has benefits of wide workspace, high payload, and high dynamic response owing to its light cable actuator utilization. For wide workspace applications, in particular, the body frame becomes large to cover the wide workspace that causes robot kinematic errors resulting from geometric uncertainty. However, appropriate sensors as well as inexpensive and easy calibration methods to measure the actual robot kinematic parameters are not currently available. Hence, we present a calibration sensor device and an auto-calibration methodology for the over-constrained cable-driven parallel robots using one-dimension laser distance sensors attached to the robot end-effector, to overcome the robot geometric uncertainty and to implement precise robot control. A novel calibration workflow with five phases—preparation, modeling, measuring, identification, and adjustment—is proposed. The proposed calibration algorithms cover the cable-driven parallel robot kinematics, as well as uncertainty modeling such as cable elongation and pulley kinematics. We performed extensive simulations and experiments to verify the performance of the suggested method using the MINI cable robot. The experimental results show that the kinematic parameters can be identified correctly with 0.92 mm accuracy, and the robot position control accuracy is increased by 58%. Finally, we verified that the developed calibration sensor devices and the calibration methodology are applicable to the massive-size cable-driven parallel robot system.


Author(s):  
Wang Zhenhua ◽  
Xu Hui ◽  
Chen Guodong ◽  
Sun Rongchuan ◽  
Lining Sun

Purpose – The purpose of this paper is to present a distance accuracy-based industrial robot kinematic calibration model. Nowadays, the repeatability of the industrial robot is high, while the absolute positioning accuracy and distance accuracy are low. Many factors affect the absolute positioning accuracy and distance accuracy, and the calibration method of the industrial robot is an important factor. When the traditional calibration methods are applied on the industrial robot, the accumulative error will be involved according to the transformation between the measurement coordinate and the robot base coordinate. Design/methodology/approach – In this manuscript, a distance accuracy-based industrial robot kinematic calibration model is proposed. First, a simplified kinematic model of the robot by using the modified Denavit–Hartenberg (MDH) method is introduced, then the proposed distance error-based calibration model is presented; the experiment is set up in the next section. Findings – The experimental results show that the proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically. Originality/value – The proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically.


Sensor Review ◽  
2016 ◽  
Vol 36 (3) ◽  
pp. 321-331 ◽  
Author(s):  
Mohammad Iman Mokhlespour Esfahani ◽  
Somaye Taghinezhad ◽  
Vahid Mottaghitalab ◽  
Roya Narimani ◽  
Mohammad Parnianpour

Purpose The purpose of this study is the measuring of the human movement using printed wearable sensor. Human movement measurement is one of the usages for wearable sensors. This technology assists the researchers to collect data from the daily activities of individuals. In other words, the kinematics data of human motion will be extracted from this data and implemented in biomechanical aspects. Design/methodology/approach This study presents an innovative printed wearable sensor which can be used for measuring human movement orientations. In this paper, the manufacturing process, implementation, measurement setup and calibration procedure of this new sensor will be explained, and the results of calibration methods will be presented. The conductive flexible nylon/lycra fabric strain gauge was developed using polypyrrole (PPy)–1, 5-naphthalenedisulfonic acid by using a sophisticated method composed of screen printing followed by chemical vapor deposition at room temperature. Findings The morphological characterization using scanning electron microscopy shows the PPy-coated fabric exhibiting a homogenous and smooth surface. Based on the results, the linearity and hysteresis error are 98 and 8 per cent, respectively. Finally, the behavior of our sensor is evaluated in some cases, and the effects of relaxation and strain rate will be discussed. Practical implications The wearable sensor is one of the most advanced technologies in biomedical engineering. It can be used in several applications for prohibition, diagnosing and treatment of diseases. Originality/value The paper present original data acquired from a technical set-up in biomechanic labs. An innovative method was used for collecting the resistance changing of the sensor. A measurement setup was prepared as a transducer to convert the resistance into voltage.


Author(s):  
Hua Liu ◽  
Weidong Zhu ◽  
Huiyue Dong ◽  
Yinglin Ke

Purpose This paper aims to propose a calibration model for kinematic parameters identification of serial robot to improve its positioning accuracy, which only requires position measurement of the end-effector. Design/methodology/approach The proposed model is established based on local frame representation of the product of exponentials (local POE) formula, which integrates all kinematic errors into the twist coordinates errors; then they are identified with the tool frame’ position deviations simultaneously by an iterative least squares algorithm. Findings To verify the effectiveness of the proposed method, extensive simulations and calibration experiments have been conducted on a 4DOF SCARA robot and a 5DOF drilling machine, respectively. The results indicate that the proposed model outperforms the existing model in convergence, accuracy, robustness and efficiency; fewer measurements are needed to gain an acceptable identification result. Practical implications This calibration method has been applied to a variable-radius circumferential drilling machine. The machine’s positioning accuracy can be significantly improved from 11.153 initially to 0.301 mm, which is well in the tolerance (±0.5 mm) for fastener hole drilling in aircraft assembly. Originality/value An accurate and efficient kinematic calibration model has been proposed, which satisfies the completeness, continuity and minimality requirements. Due to generality, this model can be widely used for serial robot kinematic calibration with any combination of revolute and prismatic joints.


2018 ◽  
Vol 38 (2) ◽  
pp. 226-238 ◽  
Author(s):  
Dan Zhao ◽  
Yunbo Bi ◽  
Yinglin Ke

Purpose This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose accuracy into account, which will largely influence the machining accuracy of the dual-machine system and assembly quality. Design/methodology/approach A comprehensive kinematic model of the dual-machine system is established by the superposition of sub-models with pose constraints, which involves base frame parameters, kinematic parameters and tool frame parameters. Based on the kinematic model and the actual pose error data measured by a laser tracker, the parameters of coordinated machines are identified by the Levenberg–Marquardt method as a multi-objective nonlinear optimization problem. The identified parameters of the coordinated machines will be used in the control system. Findings A new calibration method for the dual-machine system is developed, including a comprehensive kinematic model and an efficient parameter identification method. The experiment results show that with the proposed method, the pose accuracy of the dual-machine system was remarkably improved, especially the relative position and orientation errors. Practical implications This method has been used in an aircraft assembly project. The calibrated dual-machine system shows a good performance on system coordination and machining accuracy. Originality/value This paper proposes a new method with high accuracy and efficiency for the dual-machine system calibration. The research can be extended to multi-machine and multi-robot fields to improve the system precision.


Author(s):  
Paul Ranson ◽  
Daniel Guttentag

Purpose This study aimed to investigate whether increasing the social presence within an Airbnb lodging environment could nudge guests toward altruistic cleaning behaviors. Design/methodology/approach The study was based around a theoretical framework combining the social-market versus money-market relationship model, nudge theory and social presence theory. A series of three field experiments were conducted, in which social presence was manipulated to test its impact on guest cleaning behaviors prior to departure. Findings The experimental results confirmed the underlying hypothesis that an Airbnb listing’s enhanced social presence can subtly induce guests to help clean their rental units prior to departure. Originality/value This study is the first to examine behavioral nudging in an Airbnb context. It is also one of the first field experiments involving Airbnb. The study findings offer clear theoretical and practical implications.


Sign in / Sign up

Export Citation Format

Share Document