A reliable location-inventory-routing three-echelon supply chain network under disruption risks

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ehsan Mohebban-Azad ◽  
Amir-Reza Abtahi ◽  
Reza Yousefi-Zenouz

Purpose This study aims to design a reliable multi-level, multi-product and multi-period location-inventory-routing three-echelon supply chain network, which considers disruption risks and uncertainty in the inventory system. Design/methodology/approach A robust optimization approach is used to deal with the effects of uncertainty, and a mixed-integer nonlinear programming multi-objective model is proposed. The first objective function seeks to minimize inventory costs, such as ordering costs, holding costs and carrying costs. It also helps to choose one of the two modes of bearing the expenses of shortage or using the excess capacity to produce at the expense of each. The second objective function seeks to minimize the risk of disruption in distribution centers and suppliers, thereby increasing supply chain reliability. As the proposed model is an non-deterministic polynomial-time-hard model, the Lagrangian relaxation algorithm is used to solve it. Findings The proposed model is applied to a real supply chain in the aftermarket automotive service industry. The results of the model and the current status of the company under study are compared, and suggestions are made to improve the supply chain performance. Using the proposed model, companies are expected to manage the risk of supply chain disruptions and pay the lowest possible costs in the event of a shortage. They can also use reverse logistics to minimize environmental damage and use recycled goods. Originality/value In this paper, the problem definition is based on a real case; it is about the deficiencies in the after-sale services in the automobile industry. It considers the disruption risk at the first level of the supply chain, selects the supplier considering the parameters of price and disruption risk and examines surplus capacity over distributors’ nominal capacity.

2021 ◽  
Author(s):  
Mohammad Ehsan Zerafati ◽  
Ali Bozorgi-Amiri ◽  
Amir-Mohammad Golmohammadi ◽  
Fariborz Jolai

Abstract Recently, due to the efficiency of cultivating microalgae, researchers and investors have paid considerable attention to the production of different biofuel products that are environmentally friendly. In this study, a two-stage deterministic model is proposed to design a microalgae-based biofuels and co-products supply chain network (MBCSCN). In the first stage, the appropriate locations for the cultivation of microalgae are identified through the analytical hierarchy process (AHP). In the second stage, a deterministic mathematical mixed integer linear programing (MILP) model is developed for a period of five years based on the criteria of economic and environmental impacts. The economic objective function maximizes the overall profit, while the environmental impacts objective function seeks to minimize the consumed fossil fuel throughout the supply chain. Then, a multi-objective MILP optimization problem is solved using the ε-constraint method. The proposed model is evaluated through a case study in Iran. It has helped to identify appropriate locations for the cultivation of microalgae and to specify the required quantity of feedstock, the species of microalgae, the required technology, and the transportation modes in each step of the supply chain.


2021 ◽  
Vol 11 (2) ◽  
pp. 178-193
Author(s):  
Juliana Emidio ◽  
Rafael Lima ◽  
Camila Leal ◽  
Grasiele Madrona

PurposeThe dairy industry needs to make important decisions regarding its supply chain. In a context with many available suppliers, deciding which of them will be part of the supply chain and deciding when to buy raw milk is key to the supply chain performance. This study aims to propose a mathematical model to support milk supply decisions. In addition to determining which producers should be chosen as suppliers, the model decides on a milk pickup schedule over a planning horizon. The model addresses production decisions, inventory, setup and the use of by-products generated in the raw milk processing.Design/methodology/approachThe model was formulated using mixed integer linear programming, tested with randomly generated instances of various sizes and solved using the Gurobi Solver. Instances were generated using parameters obtained from a company that manufactures dairy products to test the model in a more realistic scenario.FindingsThe results show that the proposed model can be solved with real-world sized instances in short computational times and yielding high quality results. Hence, companies can adopt this model to reduce transportation, production and inventory costs by supporting decision making throughout their supply chains.Originality/valueThe novelty of the proposed model stems from the ability to integrate milk pickup and production planning of dairy products, thus being more comprehensive than the models currently available in the literature. Additionally, the model also considers by-products, which can be used as inputs for other products.


2021 ◽  
Author(s):  
Fatemeh Mohebalizadehgashti

Traditional logistics management has not focused on environmental concerns when designing and optimizing food supply chain networks. However, the protection of the environment is one of the main factors that should be considered based on environmental protection regulations of countries. In this thesis, environmental concerns with a mathematical model are investigated to design and configure a multi-period, multi-product, multi-echelon green meat supply chain network. A multi-objective mixed-integer linear programming formulation is developed to optimize three objectives simultaneously: minimization of the total cost, minimization of the total CO2 emissions released from transportation, and maximization of the total capacity utilization. To demonstrate the efficiency of the proposed optimization model, a green meat supply chain network for Southern Ontario, Canada is designed. A solution approach based on augmented εε-constraint method is developed for solving the proposed model. As a result, a set of Pareto-optimal solutions is obtained. Finally, the impacts of uncertainty on the proposed model are investigated using several decision trees. Optimization of a food supply chain, particularly a meat supply chain, based on multiple objectives under uncertainty using decision trees is a new approach in the literature. Keywords: Meat supply chain; Decision tree; Multi-objective programming; Mixed-integer linear programming; Augmented εε-constraint.


2019 ◽  
Vol 3 (2) ◽  
pp. 110-130 ◽  
Author(s):  
Dave C. Longhorn ◽  
Joshua R. Muckensturm

Purpose This paper aims to introduce a new mixed integer programming formulation and associated heuristic algorithm to solve the Military Nodal Capacity Problem, which is a type of supply chain network design problem that involves determining the amount of capacity expansion required at theater nodes to ensure the on-time delivery of military cargo. Design/methodology/approach Supply chain network design, mixed integer programs, heuristics and regression are used in this paper. Findings This work helps analysts at the United States Transportation Command identify what levels of throughput capacities, such as daily processing rates of trucks and railcars, are needed at theater distribution nodes to meet warfighter cargo delivery requirements. Research limitations/implications This research assumes all problem data are deterministic, and so it does not capture the variations in cargo requirements, transit times or asset payloads. Practical implications This work gives military analysts and decision makers prescriptive details about nodal capacities needed to meet demands. Prior to this work, insights for this type of problem were generated using multiple time-consuming simulations often involving trial-and-error to explore the trade space. Originality/value This work merges research of supply chain network design with military theater distribution problems to prescribe the optimal, or near-optimal, throughput capacities at theater nodes. The capacity levels must meet delivery requirements while adhering to constraints on the proportion of cargo transported by mode and the expected payloads for assets.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saeid Jafarzadeh Ghoushchi ◽  
Iman Hushyar ◽  
Kamyar Sabri-Laghaie

PurposeA circular economy (CE) is an economic system that tries to eliminate waste and continually use resources. Due to growing environmental concerns, supply chain (SC) design should be based on the CE considerations. In addition, responding and satisfying customers are the challenges managers constantly encounter. This study aims to improve the design of an agile closed-loop supply chain (CLSC) from the CE point of view.Design/methodology/approachIn this research, a new multi-stage, multi-product and multi-period design of a CLSC network under uncertainty is proposed that aligns with the goals of CE and SC participants. Recycling of goods is an important part of the CLSC. Therefore, a multi-objective mixed-integer linear programming model (MILP) is proposed to formulate the problem. Besides, a robust counterpart of multi-objective MILP is offered based on robust optimization to cope with the uncertainty of parameters. Finally, the proposed model is solved using the e-constraint method.FindingsThe proposed model aims to provide the strategic choice of economic order to the suppliers and third-party logistic companies. The present study, which is carried out using a numerical example and sensitivity analysis, provides a robust model and solution methodology that are effective and applicable in CE-related problems.Practical implicationsThis study shows how all upstream and downstream units of the SC network must work integrated to meet customer needs considering the CE context.Originality/valueThe main goal of the CE is to optimize resources, reduce the use of raw materials, and revitalize waste by recycling. In this study, a comprehensive model that can consider both SC design and CE necessities is developed that considers all SC participants.


Kybernetes ◽  
2018 ◽  
Vol 47 (8) ◽  
pp. 1585-1603 ◽  
Author(s):  
Chuanxu Wang ◽  
Yanbing Li ◽  
Zhengcai Wang

Purpose This paper aims to develop a bi-objective mixed integer non-linear programing model to optimize the supply chain networks consisting of raw material providers, final product manufacturers and distribution centers. Raw material substitution caused by varying raw material supply amounts, prices and carbon emissions and final product substitution due to different product prices and carbon emissions are considered. Design/methodology/approach The proposed model aims to achieve total profit maximization and total carbon emission minimization. The objective function of carbon emissions is converted into a maximization problem by changing minimum to maximum. The composite objective function is the weighted sum of the bias value of each objective function. The model is then solved using software Lingo12. Findings Numerical analysis results show that an increase in the number of alternate raw materials for original raw material helps improve supply chain network performance, and variation in that number causes detectable but not significant changes in downstream final product substitution results. Originality/value The major differences between this work and existing research are as follows: first, although previous research considered carbon emissions in supply chain network optimization, it has not considered the substitution effects of products or raw materials. This paper considers the substitution of both raw material and productions. Second, the item substitution considered by previous research is derived from inventory shortage or price difference of original items. However, the substitution considered in the present paper is a response to differences in purchase price, production cost and carbon emissions for items.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahour Mellat Parast ◽  
Nachiappan Subramanian

Purpose This paper aims to examine the relationship of supply chain disruption risk drivers to supply chain performance and firm performance outcomes. Design/methodology/approach Four disruption risk drivers for a supply chain are identified, namely, demand disruption risk, supply disruption risk, process disruption risk and environment disruption risk. A cross-sectional survey was developed and data was collected from 315 Chinese firms to determine the relationship of supply chain disruption risks to supply chain performance and firm performance. Findings The empirical findings show that supply disruption risks and process disruption risks have a significant impact on supply chain performance. In addition, this paper shows that supply disruptions, demand disruptions and process disruptions are significantly related to firm performance. This paper shows that supply chain disruption risks have different effects on supply chain performance and firm performance. Managers should be aware that disruption risk drivers can have an impact on firm performance that is different from their impact on supply chain performance. An important finding of the study is that the magnitude of the impact of disruption risks on supply chain performance is greater on the upstream side of the supply chain than on the downstream side of the supply chain. Originality/value This is one of the early studies to examine the effect of supply chain disruption risk drivers on both firm performance and supply chain performance. An important finding of the study is that the magnitude of the impact of disruption risks on supply chain performance is greater on the upstream side of the supply chain than on the downstream side of the supply chain.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Prem Chhetri ◽  
Mahsa Javan Nikkhah ◽  
Hamed Soleimani ◽  
Shahrooz Shahparvari ◽  
Ashkan Shamlou

PurposeThis paper designs an optimal closed-loop supply chain network with an integrated forward and reverse logistics to examine the possibility of remanufacturing end-of-life (EoL) ships.Design/methodology/approachExplanatory variables are used to estimate the number of EoL ships available in a closed-loop supply chain network. The estimated number of EoL ships is used as an input in the model and then it is solved by a mixed-integer linear programming (MILP) model of the closed-loop supply chain network to minimise the total logistic costs. A discounted payback period formula is developed to calculate the length of time to recoup an investment based on the investment's discounted cash flows. Existing ship wrecking industry clusters in the Western region of India are used as the case study to apply the proposed model.FindingsThe MILP model has optimised the total logistics costs of the closed-loop supply network and ascertained the optimal number and location of remanufacturing for building EoL ships. The capital and variable costs required for establishing and operating remanufacturing centres are computed. To remanufacture 30 ships a year, the discounted payback period of this project is estimated to be less than two years.Practical implicationsShip manufacturing businesses are yet to re-manufacture EoL ships, given high upfront capital expenditure and operational challenges. This study provides management insights into the costs and benefits of EoL ship remanufacturing; thus, informing the decision-makers to make strategic operational decisions.Originality/valueThe design of an optimal close loop supply chain network coupled with a Bayesian network approach and discounted payback period formula for the collection and remanufacturing of EoL ships provides a new integrated perspective to ship manufacturing.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Dezhi Zhang ◽  
Fangzi Zou ◽  
Shuangyan Li ◽  
Lingyun Zhou

This study considers a design problem in the supply chain network of an assembly manufacturing enterprise with economies of scale and environmental concerns. The study aims to obtain a rational tradeoff between environmental influence and total cost. A mixed-integer nonlinear programming model is developed to determine the optimal location and size of regional distribution centers (RDCs) and the investment of environmental facilities considering the effects of economies of scale and CO2 emission taxes. Numerical examples are provided to illustrate the applications of the proposed model. Moreover, comparative analysis of the related key parameters is conducted (i.e., carbon emission tax, logistics demand of customers, and economies of scale of RDC), to explore the corresponding effects on the network design of a green supply chain. Moreover, the proposed model is applied in an actual case—network design of a supply chain of an electric meter company in China. Findings show that (i) the optimal location of RDCs is affected by the demand of customers and the level of economies of scale and that (ii) the introduction of CO2 emission taxes will change the structure of a supply chain network, which will decrease CO2 emissions per unit shipment.


Author(s):  
Shayan Shafiee Moghadam ◽  
Amir Aghsami ◽  
Masoud Rabbani

Designing the supply chain network is one of the significant areas in e-commerce business management. This concept plays a crucial role in e-commerce systems. For example, location-inventory-pricing-routing of an e-commerce supply chain is considered a crucial issue in this field. This field established many severe challenges in the modern world, like maintaining the supply chain for returned items, preserving customers' trust and satisfaction, and developing an applicable supply chain with cost considerations. The research proposes a multi-objective mixed integer nonlinear programming model to design a closed-loop supply chain network based on the e-commerce context. The proposed model incorporates two objectives that optimize the business's total profits and the customers' satisfaction. Then, numerous numerical examples are generated and solved using the epsilon constraint method in GAMS optimization software. The validation of the given model has been tested for the large problems via a hybrid two-level non-dominated sort genetic algorithm. Finally, some sensitivity analysis has been performed to provide some managerial insights.


Sign in / Sign up

Export Citation Format

Share Document