Novel implementation of 3D multiplexers in nano magnetic logic technology

2020 ◽  
Vol 37 (4) ◽  
pp. 173-179
Author(s):  
Farnoosh Farzaneh ◽  
Reza Faghih Mirzaee ◽  
Keivan Navi

Purpose Owing to recent challenges of CMOS manufacturing and power consumption in silicon technologies among alternative technologies, Nanomagnetic logic (NML) is one of the most promising technologies, so it was selected for this study. NML is non-volatile with ultra-low power dissipation that operates at room temperature. This paper aims to propose novel implementation of 2% and 4% multiplexers (MUXs) in NML technology. Design/methodology/approach The proposed multiplexers in NML technology are verified by HDL-based simulators. In addition, this study estimated area and power dissipation of the proposed design to compare and approve the promising improvements in comparison to other similar NML implementations. Findings The results show the remarkable improvements in terms of APDP term in comparison to the recent proposed MUXs in NML technology which are reported in Table 2. The proposed implementation of the MUX in NML is designed in three-dimensional layout to improve interconnection complexity which is an integration challenge. Also, by facilitating the routing signals and total wire length needed for clock signals, the negative impact of the power dissipated in clock wires is improved. Originality/value These findings would appeal to a broad audience, such as the readership of Microelectronics International Journal. The authors confirm that this work is original and has not been published elsewhere nor is it currently under consideration for publication elsewhere. All authors have approved the paper and agreed with submission to Microelectronics International Journal. The authors have read and have abided by the statement of ethical standards for manuscripts submitted to Microelectronics International Journal. The authors have no conflict of interest to declare.

2016 ◽  
Vol 7 ◽  
pp. 1397-1403 ◽  
Author(s):  
Andrey E Schegolev ◽  
Nikolay V Klenov ◽  
Igor I Soloviev ◽  
Maxim V Tereshonok

We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.


2011 ◽  
Vol 64 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Giuseppe Moschetti ◽  
Niklas Wadefalk ◽  
Per-Åke Nilsson ◽  
Yannick Roelens ◽  
Albert Noudeviwa ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 1-9
Author(s):  
Ruan Evangelista Formigoni ◽  
Ricardo Santos Ferreira ◽  
José Augusto M. Nacif

CMOS technology is reaching power, thermal, and physical limits at an alarming pace. As a response, post-silicon research investigates alternative technologies to perform computation. Field-Coupled Nanocomputing (FCN) presents low power dissipation, high frequencies, and room temperature operation. Nevertheless, FCN imposes several challenges in the development of efficient and scalable CAD tools. The placement and routing step is especially tricky in FCN compared to CMOS because of synchronization issues inherent to these technologies, such as path balancing and reconvergent paths. In this work, we survey the state-of-art of placement and routing algorithms for FCN. We describe the most recent FCN placement and routing algorithms, highlighting their limitations and, finally, presenting future work directions.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ismail Gassoumi ◽  
Lamjed Touil ◽  
Bouraoui Ouni ◽  
Abdellatif Mtibaa

Quantum-dot cellular automata (QCA) technology is one of the emerging technologies that can be used for replacing CMOS technology. It has attracted significant attention in the recent years due to its extremely low power dissipation, high operating frequency, and a small size. In this study, we demonstrate an n-bit parity generator circuit by utilizing QCA technology. Here, a novel XOR gate is used in the synthesis of the proposed circuit. The proposed gate is based on electrostatic interactions between cells to perform the desired function. The comparison results demonstrate that the designed QCA circuits have advantages compared to other circuits in terms of cell count, area, delay, and power consumption. The QCADesigner software, as widely used QCA circuit design and verification, has been used to implement and to verify all of the designs in this study. Power dissipation has been computed for the proposed circuit using accurate QCAPro power estimator tool.


2006 ◽  
Vol 42 (12) ◽  
pp. 688 ◽  
Author(s):  
W. Kruppa ◽  
J.B. Boos ◽  
B.R. Bennett ◽  
N.A. Papanicolaou ◽  
D. Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document