Analytical modeling for the thermoelastic buckling behavior of functionally graded rectangular plates using hyperbolic shear deformation theory under thermal loadings

2015 ◽  
Vol 11 (4) ◽  
pp. 558-578 ◽  
Author(s):  
Mokhtar Bouazza ◽  
Noureddine Benseddiq

Purpose – The purpose of this paper is to investigate an analytical modeling for the thermoelastic buckling behavior of functionally graded (FG) rectangular plates (FGM) under thermal loadings. The material properties of FGM are assumed to vary continuously through the thickness of the plate, according to the simple power-law distribution. Derivations of equations are based on novel refined theory using a new hyperbolic shear deformation theory. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theory presented is variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. In addition, numerical results for a variety of FG plates with simply supported edge are presented and compared with those available in the literature. Moreover, the effects of geometrical parameters of dimension the length to width aspect ratio (a/b), the plate width to thickness ratio (b/h), and material properties index (k) on the FGM buckling temperature difference are determined and discussed. Design/methodology/approach – In the current paper, the application of the refined theory proposed by Shimpi is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. It is extended to the analysis of buckling behavior of ceramic-metal FG plates subjected to the three types of thermal loadings, namely; uniform temperature rise, linear temperature change across the thickness, and nonlinear temperature change across the thickness. The material properties of the FG plates are assumed to vary continuously through the thickness of the plate, according to the simple power-law distribution. Numerical results for a variety of FG plates with simply supported edges are given and compared with the available results, wherever possible. Additionally, the effects of geometrical parameters and material properties on the buckling temperature difference of FGM plates are determined and discussed. Findings – Unlike any other theory, the theory presented gives rise to only four governing equations. Number of unknown functions involved is only four, as against five in case of simple shear deformation theories of Mindlin and Reissner (first shear deformation theory). The plate properties are assumed to be varied through the thickness following a simple power-law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Originality/value – To the best of the authors’ knowledge, there are no research works for thermal buckling analysis of FG rectangular plates based on new four-variable refined plate theory (RPT). The novelty of this paper is extended the use of the above-mentioned RPT with the addition of a new function proposed by Shimpi for thermal buckling analysis of plates made of FG materials. Unlike any other theory, the number of unknown functions involved is only four, as against five in the case of other shear deformation theories. The theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. The plates subjected to the two types of thermal loadings, namely; uniform temperature rise and nonlinear temperature change across the thickness. Numerical results for a variety of FG plates with simply supported edges are given and compared with the available results.

2015 ◽  
Vol 11 (3) ◽  
pp. 437-470 ◽  
Author(s):  
Amale Mahi ◽  
El Abbas Adda Bedia ◽  
Abdelouahed Tounsi ◽  
Amina Benkhedda

Purpose – A new simple parametric shear deformation theory applicable to isotropic and functionally graded plates is developed. This new theory has five degrees of freedom, provides parabolic transverse shear strains across the thickness direction and hence, it does not need shear correction factor. Moreover, zero-traction boundary conditions on the top and bottom surfaces of the plate are satisfied rigorously. The paper aims to discuss these issues. Design/methodology/approach – Material properties are temperature-dependent and vary continuously through the thickness according to a power law distribution. The plate is assumed to be initially stressed by a temperature rise through the thickness. The energy functional of the system is obtained using Hamilton’s principle. Free vibration frequencies are then calculated using a set of characteristic orthogonal polynomials and by applying Ritz method for different boundary conditions. Findings – In the light of good performance of the present theory for all boundary conditions considered, it can be considered as an excellent alternative to some two-dimensional (2D) theories for approximating the tedious and time consuming three-dimensional plate problems. Originality/value – To the best of the authors’ knowledge and according to literature survey, almost all published higher order shear deformation theories have been limited to simply supported boundary conditions and without taking into account the thermal stresses effects. The existing 2D shear deformation theories of Reddy, Karama and Touratier can be easily recovered. Furthermore, this feature can be highly appreciated in an iterative design process where a large number of derived plate models can be tested by selecting only two parameters in a simple polynomial function which is computationally efficient. Finally, new results are presented to show the effect of material variation, and temperature rise on natural frequencies of the FG plate for different boundary conditions.


2019 ◽  
Vol 15 (1) ◽  
pp. 79-102 ◽  
Author(s):  
Anup Pydah ◽  
Aditya Sabale

PurposeThere exists a clear paucity of models for curved bi-directional functionally graded (BDFG) beams wherein the material properties vary along the axis and thickness of the beam simultaneously; such structures may help fulfil practical design requirements of the future and improve structural efficiency. In this context, the purpose of this paper is to extend the analytical model developed earlier to thick BDFG circular beams by using first-order shear deformation theory which allows for a non-zero shear strain distribution through the thickness of the beam.Design/methodology/approachSmooth functional variations of the material properties have been assumed along the axis and thickness of the beam simultaneously. The governing equations developed have been solved analytically for some representative determinate circular beams. In order to ascertain the effects of shear deformation in these structures, the total strain energy has been decomposed into its bending and shear components and the effects of the beam thickness and the arch angle on the shear energy component have been studied.FindingsClosed-form exact solutions involving through-the-thickness integrals carried out numerically are presented for the bending of circular beams under the action of a variety of concentrated/distributed loads.Originality/valueThe results clearly indicate the importance of capturing shear deformation in thick BDFG beams and demonstrate the capability of tuning the response of these beams to fit a wide variety of structural requirements.


2007 ◽  
Vol 04 (04) ◽  
pp. 633-644
Author(s):  
K. SUBHA ◽  
SHASHIDHARAN ◽  
S. SAVITHRI ◽  
V. SYAM PRAKASH

In this paper, results of the stress analysis of composite laminates subjected to mechanical load based on different higher order shear deformation theories are presented. Among the many equivalent single layer theories (ESL), the third-order shear deformation theory of Reddy is the most widely accepted model in the study of laminates. This model cannot represent shear stress continuity at the interfaces and zigzag nature of the displacement field. To improve the accuracy of transverse shear stress prediction, layer wise theories have proved to be very promising techniques. In all these theories, zero transverse shear stress boundary conditions at the top and the bottom of the plate are imposed. In many engineering applications, this requirement is not valid when the plate is subjected to shear traction parallel to the surface. To account for this, a displacement model which releases the zero transverse shear stress boundary condition is taken. The unconstrained third-order shear deformation theory (UTSDT) is useful where the boundary layer shear stress is significant. Navier solutions for bending and stress analysis of cross ply laminates are presented using layer wise model, unconstrained third-order shear deformation model and Reddy's ESL model, and compared with 3D elasticity solutions.


Author(s):  
Mohamed-Ouejdi Belarbi ◽  
Abdelhak Khechai ◽  
Aicha Bessaim ◽  
Mohammed-Sid-Ahmed Houari ◽  
Aman Garg ◽  
...  

In this paper, the bending behavior of functionally graded single-layered, symmetric and non-symmetric sandwich beams is investigated according to a new higher order shear deformation theory. Based on this theory, a novel parabolic shear deformation function is developed and applied to investigate the bending response of sandwich beams with homogeneous hardcore and softcore. The present theory provides an accurate parabolic distribution of transverse shear stress across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the functionally graded sandwich beam without using any shear correction factors. The governing equations derived herein are solved by employing the finite element method using a two-node beam element, developed for this purpose. The material properties of functionally graded sandwich beams are graded through the thickness according to the power-law distribution. The predictive capability of the proposed finite element model is demonstrated through illustrative examples. Four types of beam support, i.e. simply-simply, clamped-free, clamped–clamped, and clamped-simply, are used to study how the beam deflection and both axial and transverse shear stresses are affected by the variation of volume fraction index and beam length-to-height ratio. Results of the numerical analysis have been reported and compared with those available in the open literature to evaluate the accuracy and robustness of the proposed finite element model. The comparisons with other higher order shear deformation theories verify that the proposed beam element is accurate, presents fast rate of convergence to the reference results and it is also valid for both thin and thick functionally graded sandwich beams. Further, some new results are reported in the current study, which will serve as a benchmark for future research.


2012 ◽  
Vol 29 (2) ◽  
pp. 241-252 ◽  
Author(s):  
A. S. Sayyad ◽  
Y. M. Ghugal

AbstractThis paper deals with the problem of stress distribution in orthotropic and laminated plates subjected to central concentrated load. An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is used to obtain in-plane normal and transverse shear stresses through the thickness of plate. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. A simply supported plate with central concentrated load is considered for the numerical analysis. Anomalous behavior of inplane normal and transverse shear stresses is observed due to effect of stress concentration compared to classical plate theory and first order shear deformation theory.


Author(s):  
Charles W. Bert ◽  
Chun-Do Kim

Abstract A simplified theory for predicting the first-order critical speed of a shear deformable, composite-material driveshaft is presented. The shaft is modeled as a Bresse-Timoshenko beam generalized to include bending-twisting coupling. Numerical results are compared with those for both thin and thick walled shell theories and generalized Bernoulli-Euler theory.


2018 ◽  
Vol 22 (7) ◽  
pp. 2302-2329
Author(s):  
Lan T That-Hoang ◽  
Hieu Nguyen-Van ◽  
Thanh Chau-Dinh ◽  
Chau Huynh-Van

This paper improves four-node quadrilateral plate elements by using cell-based strain smoothing enhancement and higher-order shear deformation theory (HSDT) for geometrically nonlinear analysis of composite structures. Small strain-large displacement theory of von Kármán is used in nonlinear formulations of four-node quadrilateral plate elements that have strain components smoothed or averaged over the sub-domains of the elements. From the divergence theory, the displacement gradients in the smoothed strains are transformed from the area integral into the line one. The behavior of composite structures follows the third-order shear deformation theory. The solution of the nonlinear equilibrium equations is obtained by the iterative method of Newton–Raphson with the appropriate convergence criteria. The present numerical results are compared with the other numerical results available in the literature in order to demonstrate the effectiveness of the developed element. These results also contribute a better knowledge and understanding of nonlinear bending behaviors of these composite structures.


2019 ◽  
Vol 25 ◽  
pp. 69-83 ◽  
Author(s):  
Slimane Merdaci

This article presents the free vibration analysis of simply supported plate FG porous using a high order shear deformation theory. In is work the material properties of the porous plate FG vary across the thickness. The proposed theory contains four unknowns unlike the other theories which contain five unknowns. This theory has a parabolic shear deformation distribution across the thickness. So it is useless to use the shear correction factors. The Hamilton's principle will be used herein to determine the equations of motion. Since, the plate are simply supported the Navier procedure will be retained. To show the precision of this model, several comparisons have been made between the present results and those of existing theories in the literature for non-porous plates. Effects of the exponent graded and porosity factors are investigated.


Sign in / Sign up

Export Citation Format

Share Document